A Scalable Algorithm For Sparse Portfolio Selection
The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound o...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
28.03.2021
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum investment constraints. Existing certifiably optimal approaches to this problem do not converge within a practical amount of time at real world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic which supplies high-quality warm-starts, a preprocessing technique for decreasing the gap at the root node, and an analytic technique for strengthening our cuts. We also study the problem's Boolean relaxation, establish that it is second-order-cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems. |
|---|---|
| AbstractList | The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum investment constraints. Existing certifiably optimal approaches to this problem do not converge within a practical amount of time at real world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic which supplies high-quality warm-starts, a preprocessing technique for decreasing the gap at the root node, and an analytic technique for strengthening our cuts. We also study the problem's Boolean relaxation, establish that it is second-order-cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems. |
| Author | Bertsimas, Dimitris Cory-Wright, Ryan |
| Author_xml | – sequence: 1 givenname: Dimitris surname: Bertsimas fullname: Bertsimas, Dimitris – sequence: 2 givenname: Ryan surname: Cory-Wright fullname: Cory-Wright, Ryan |
| BookMark | eNotzUFLwzAYgOEgCs65H-At4Ln1-74kTXIswzlhoNDdR5qm2hGbmXbiz1fQ03t73ht2OaYxMHaHUEqjFDy4_D18lWgQSwAU5oItSAgsjCS6ZqtpOgIAVZqUEgsmat54F10bA6_jW8rD_P7BNynz5uTyFPhrynOf4pB4E2Lw85DGW3bVuziF1X-XbL953K-3xe7l6Xld7wqnSBcVBq-ltt4r62WnsHNC-c5VTrXS6s5KQAxaoegNeKe6iiSJIGRLZHvZiyW7_2NPOX2ewzQfjumcx9_jgZCMALCgxQ9QHUbD |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1811.00138 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a527-61ec7479cc59c4d51da35cda6a5b497d94011e7513f80ca5d62423e34b229f4f3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:41:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a527-61ec7479cc59c4d51da35cda6a5b497d94011e7513f80ca5d62423e34b229f4f3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2128300907?pq-origsite=%requestingapplication% |
| PQID | 2128300907 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2128300907 |
| PublicationCentury | 2000 |
| PublicationDate | 20210328 |
| PublicationDateYYYYMMDD | 2021-03-28 |
| PublicationDate_xml | – month: 03 year: 2021 text: 20210328 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7534975 |
| SecondaryResourceType | preprint |
| Snippet | The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Approximation Cutting Economic conditions Economic models Heuristic methods Linear functions Lower bounds Optimization Performance enhancement Portfolio management Representations Upper bounds |
| Title | A Scalable Algorithm For Sparse Portfolio Selection |
| URI | https://www.proquest.com/docview/2128300907 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90U_DJb_yYow--dmvz0TZPMmVDQUexQ-bTyJJUB3Od7Rz--V66Th8EX3wMIZDkwuV-d7-7A7gUNNVGG-OOiVA2zGhcGRgUCJHcIPxgq_Sxp_uw34-GQxFXDreiolWudWKpqHWmrI-8jSo2omgQeOHV_N21XaNsdLVqobEJdVupjNWgft3tx4_fXhYShGgz01U4syze1Zb552TZwo_Nb5Vhul9KuPxZerv_3dMe1GM5N_k-bJjZAWyXjE5VHALtOAnev82McjrTF1y2eH1zelnuJHMEs8axHNI0m04yJyl74aCAjmDQ6w5ubt2qQ4IrObHpfUYhHBBKcaGY5r6WlCstA8nHTIRaIHjyTch9mkaeklzbZBBqKBsTIlKW0mOozbKZOQFHGg-hTKhYhKtSEUUiCK0xo1OChq1kp9BYX8GoeuXF6Of8Z39Pn8MOsVwQj7okakBtkX-YC9hSy8WkyJuV0JqWd5ngKL57iJ-_ANxso0A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Qe9Bjke72tQdjiEogPEICMXhqlt2tkiDFFlF_lP_R2UL1YOKNg-emzXbm6-w3O_N1AM4ZDaWSSpkDwoQuMyqTuwodQrijMP2w5_Kx-6bXbvv9Puvk4DPTwui2yiwmpoFaRkKfkV9iiPUpEoKydz15MfXUKF1dzUZozGHRUB9vmLIlV_Vb9O8FIdW73k3NXEwVMLlDtCROCaTQTAiHCVs6luTUEZK73BnYzJMMEw5LeY5FQ78suCO1gIIqag8IYaEdUnzsChRsxLqfh0Kn3uo8fB_qENdDik7n1dP0X2GXPH4fzkq4j1qltCr4K-anG1l185-ZYAtfnU9UvA05Nd6BtbRfVSS7QCtGF9GldV9GZfSIq5w-PRvVKDa6E0zVlaE7ZMNoNIyMbjrpB-G3B71lLHMf8uNorA7A4KqMiZonbB_vCpnvM9fTVE2GBGk7tw-hmFk8WHzDSfBj7qO_L5_Beq3XagbNertxDBtEd72UqUn8IuSn8as6gVUxmw6T-HSBFwOCJbvnC_pB-3Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Scalable+Algorithm+For+Sparse+Portfolio+Selection&rft.jtitle=arXiv.org&rft.au=Bertsimas%2C+Dimitris&rft.au=Cory-Wright%2C+Ryan&rft.date=2021-03-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1811.00138 |