Analysis of chaotic dynamical systems with autoencoders

We focus on chaotic dynamical systems and analyze their time series with the use of autoencoders, i.e., configurations of neural networks that map identical output to input. This analysis results in the determination of the latent space dimension of each system and thus determines the minimal number...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Almazova, N, Barmparis, G D, Tsironis, G P
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 22.09.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We focus on chaotic dynamical systems and analyze their time series with the use of autoencoders, i.e., configurations of neural networks that map identical output to input. This analysis results in the determination of the latent space dimension of each system and thus determines the minimal number of nodes necessary to capture the essential information contained in the chaotic time series. The constructed chaotic autoencoders generate similar maximal Lyapunov exponents as the original chaotic systems and thus encompass their essential dynamical information.
AbstractList We focus on chaotic dynamical systems and analyze their time series with the use of autoencoders, i.e., configurations of neural networks that map identical output to input. This analysis results in the determination of the latent space dimension of each system and thus determines the minimal number of nodes necessary to capture the essential information contained in the chaotic time series. The constructed chaotic autoencoders generate similar maximal Lyapunov exponents as the original chaotic systems and thus encompass their essential dynamical information.
Author Barmparis, G D
Tsironis, G P
Almazova, N
Author_xml – sequence: 1
  givenname: N
  surname: Almazova
  fullname: Almazova, N
– sequence: 2
  givenname: G
  surname: Barmparis
  middlename: D
  fullname: Barmparis, G D
– sequence: 3
  givenname: G
  surname: Tsironis
  middlename: P
  fullname: Tsironis, G P
BookMark eNotjstKAzEUQIMoWGs_wF3A9Yw3uXkuS_EFBTfdl2uSoVOmE53MqPP3FnR14CwO54Zd9rlPjN0JqJXTGh5o-Gm_ainA1wLBugu2kIiickrKa7Yq5QgA0lipNS6YXffUzaUtPDc8HCiPbeBx7unUBup4mcuYToV_t-OB0zTm1Icc01Bu2VVDXUmrfy7Z7ulxt3mptm_Pr5v1tiItbaWc9wQhySa8o0GVlHBJ6WA1YTq76AhcAiOUilF4EwTJRlKSGACiRlyy-7_sx5A_p1TG_TFPw3m57BGMN84btPgLiSFJ8g
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2109.13078
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-4899a0ce2fcb3634e418e45c75a3efcbd8a08e06144dd196c1a2f2ae23c00d533
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:23:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-4899a0ce2fcb3634e418e45c75a3efcbd8a08e06144dd196c1a2f2ae23c00d533
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/3069689637?pq-origsite=%requestingapplication%
PQID 3069689637
PQPubID 2050157
ParticipantIDs proquest_journals_3069689637
PublicationCentury 2000
PublicationDate 20210922
PublicationDateYYYYMMDD 2021-09-22
PublicationDate_xml – month: 09
  year: 2021
  text: 20210922
  day: 22
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.770605
SecondaryResourceType preprint
Snippet We focus on chaotic dynamical systems and analyze their time series with the use of autoencoders, i.e., configurations of neural networks that map identical...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Dynamical systems
Liapunov exponents
Neural networks
Time series
Title Analysis of chaotic dynamical systems with autoencoders
URI https://www.proquest.com/docview/3069689637
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3iUKgOrqWM7sTMhgVrBQBVBhzJVzvkiKqGmJG3Fz8dOUxiQWBhtL5Z9Pt_j0_cRcp0xjA2gokZzl6AkuaZZhJqC5KGIQRgLrBabUMOhHo-TtCm4VQ2scuMTa0dtC_A18p4LbZNYO3NRt_MP6lWjfHe1kdDYJm3PVObsvH3XH6bP31UWHisXM4t1O7Mm7-qZ8nO6unGZTuKVkJX-5YTrn2Ww_989HZB2auZYHpItnB2R3RrRCdUxURu6kaDIA3gzhbOQwK715817sGZwrgJfhw3MclF4QksPaj4ho0F_dP9AG5UEaiKuqHQJk2GAPIdMxEKiDDXKCFRkBLo5qw3TWOd91rrnBqHhOTfIBTBmXbB3SlqzYoZnJNAqszGqnIWgpZRZIvIcpUCImLDurs9JZ3MMk8bSq8nPGVz8vXxJ9rjHg_iODu-Q1qJc4hXZgdViWpXd5uK6Hnv54kbp41P6-gUNB6eq
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED1VLQgmvsVHgQwwhqa2EzsDQuKjatVSVahDt8qxL6JLUpq20B_Ff8ROGxiQ2DqwJkt0fr743Z3fA7iKPAykQu5KQQxBCWPhRj4KVzFSp4GiUisvN5vg3a4YDMJeCT6LuzB2rLLIiXmi1qmyNfKaOdqGgTBw4XfjN9e6RtnuamGhsYRFGxfvhrJlt61Hs77XhDSe-g9Nd-Uq4EqfcJcZgiE9hSRWEQ0oQ1YXyHzFfUnRPNNCegJznqS1gaeqSxITiYQqz9O-rX-ajF9hlAV-GSr3T93ey3dRhwTcHNHpsnuaa4XV5ORjNL8xxCq0xstc_Mr5-Y-ssfPPQrALlZ4c42QPSpjsw2Y-r6qyA-CFmIqTxo56lanBv6MXiczVD5ylPnXm2CqzI2fT1Mp12pHtQ-iv41OPoJykCR6DI3ikA-SxV1eCMRaFNI6RUVS-R7VB8glUi6gPV_s4G_6E_PTv15ew1ew_d4adVrd9BtvETr7Y3hWpQnk6meE5bKj5dJRNLlaYcWC45iX6AtBEATM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+chaotic+dynamical+systems+with+autoencoders&rft.jtitle=arXiv.org&rft.au=Almazova%2C+N&rft.au=Barmparis%2C+G+D&rft.au=Tsironis%2C+G+P&rft.date=2021-09-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2109.13078