A novel dataset for the identification of computer generated melodies in the CSMT challenge

In this paper, the dataset used for the data challenge organised by Conference on Sound and Music Technology (CSMT) is introduced. The CSMT data challenge requires participants to identify whether a given piece of melody is generated by computer or is composed by human. The dataset is formed by two...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Li, Shengchen, Yinji Jing, Fazekas, György
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 01.12.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, the dataset used for the data challenge organised by Conference on Sound and Music Technology (CSMT) is introduced. The CSMT data challenge requires participants to identify whether a given piece of melody is generated by computer or is composed by human. The dataset is formed by two parts: development dataset and evaluation dataset. The development dataset contains only computer generated melodies whereas the evaluation dataset contain both computer generated melodies and human composed melodies. The aim of the dataset is to examine whether it is possible to distinguish computer generated melodies by learning the feature of generated melodies.
AbstractList In this paper, the dataset used for the data challenge organised by Conference on Sound and Music Technology (CSMT) is introduced. The CSMT data challenge requires participants to identify whether a given piece of melody is generated by computer or is composed by human. The dataset is formed by two parts: development dataset and evaluation dataset. The development dataset contains only computer generated melodies whereas the evaluation dataset contain both computer generated melodies and human composed melodies. The aim of the dataset is to examine whether it is possible to distinguish computer generated melodies by learning the feature of generated melodies.
Author Li, Shengchen
Yinji Jing
Fazekas, György
Author_xml – sequence: 1
  givenname: Shengchen
  surname: Li
  fullname: Li, Shengchen
– sequence: 2
  fullname: Yinji Jing
– sequence: 3
  givenname: György
  surname: Fazekas
  fullname: Fazekas, György
BookMark eNotjT1PwzAUAC0EEqX0B7BZYk5xnj8zVhVQpCIGsjFUT_ZL6yq1S-JW_HwQMN10dzfsMuVEjN3VYq6c1uIBh694noOoYS6kUeaCTUDKunIK4JrNxnEvhABjQWs5YR8LnvKZeh6w4EiFd3ngZUc8BkoldtFjiTnx3HGfD8dToYFvKdGAhQI_UJ9DpJHH9Cst319b7nfY95S2dMuuOuxHmv1zytqnx3a5qtZvzy_LxbpCDbaS0ioXvKpBeOFQWdl49OCs99hQ03mHGCQF0MYgQoOGyJMzISiB1qGcsvu_7HHInycay2afT0P6OW5AGScAtLXyGw5XVtU
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2012.03646
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-33748dc4120c08a4739cac287cca9e9fc8aad3ed2566aa29a6eece86dd40a78a3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:30:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-33748dc4120c08a4739cac287cca9e9fc8aad3ed2566aa29a6eece86dd40a78a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2468022577?pq-origsite=%requestingapplication%
PQID 2468022577
PQPubID 2050157
ParticipantIDs proquest_journals_2468022577
PublicationCentury 2000
PublicationDate 20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211201
  day: 01
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7777094
SecondaryResourceType preprint
Snippet In this paper, the dataset used for the data challenge organised by Conference on Sound and Music Technology (CSMT) is introduced. The CSMT data challenge...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Datasets
Evaluation
Title A novel dataset for the identification of computer generated melodies in the CSMT challenge
URI https://www.proquest.com/docview/2468022577
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7opuDJ3_hjjhy81nVpmrYn0THRw0ZxO0w8jNcklcFsZzuHf75JzPQgePFSWkqg5NEvX9778j6AS8pzqWlo7kkeoceyLvMyFWYaDMNA6Bsf88yaTUTDYTyZJKlLuNVOVrnGRAvUshQmR96hjJtToWEUXS_ePOMaZaqrzkJjE5qmUxlrQPO2P0wfv7MslEeaMwdf5UzbvKuD1cdsZTRd9MrU4PgvELYry93uf79pD5opLlS1DxuqOIBtq-gU9SE835CiXKk5MRrQWi2JZqdEsz0yk04gZGNCypwI5-xAXmwPas1Byaual0ZfSGaFHdQbDcZErI1XjmB81x_37j3npOBhSDWImB4zUrAu9YUfI4uCRKDQeyUdvkQluYgRZaCkpj8ckSbIlRIq5lIyH6MYg2NoFGWhToDoHQ_vosiMXwdTmt0pQ4BoIqS-YihOobWeqqn7G-rpzzyd_f36HHao0YxYuUgLGsvqXV3AllgtZ3XVdsFtG33mSD-lD4P06RPZWbNo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Q96DHCmzbbXswxqAEwiMkcCDxQLa7W0OCLVJE_VH-R2cXqgcTbxy8NE2abbKd2ek3O9_OB3BJWSQRhkaWZB63nLDiWKFyQwyGri3wpsyj0IhNeJ2OPxgE3Rx8ZmdhNK0yi4kmUMtE6D3yEnWYPhXqet7t5MXSqlG6uppJaCzcoqk-3jBlS28a92jfK0prD_1q3VqqCljcpbigdL8VKZwKLYuyzx3PDgQXmDfgVAIVRMLnXNpKIhRgnNOAM6WE8pmUTpl7PrfxtWtQcHTwN0zB3veWDmUeAnR7UTs1ncJKfPo-mmsCGb3WBT_2K-Kb31ht-599gB0odPlETXchp-I92DBsVZHuw-MdiZO5GhPNb03VjCDyJohkyUguyU_G30gSEbFUrSBPpr824mvyrMaJ5k6SUWwGVXvtPhGZqMwB9FcxnUPIx0msjoBgNscqXIRai8RRiFyVBnc0EBKv3BXHUMwsM1yu9HT4Y5aTvx9fwGa9324NW41O8xS2qObGGFpMEfKz6as6g3Uxn43S6bnxKgLDFRvxC3gODZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+dataset+for+the+identification+of+computer+generated+melodies+in+the+CSMT+challenge&rft.jtitle=arXiv.org&rft.au=Li%2C+Shengchen&rft.au=Yinji+Jing&rft.au=Fazekas%2C+Gy%C3%B6rgy&rft.date=2021-12-01&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2012.03646