Hybrid Classical-Quantum Autoencoder for Anomaly Detection
We propose a Hybrid classical-quantum Autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE) and a parametrized quantum circuit (PQC) that is inserted into its bottleneck. The PQC augments the latent space, on which a standard outlier detection method is applied to search for an...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
16.12.2021
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a Hybrid classical-quantum Autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE) and a parametrized quantum circuit (PQC) that is inserted into its bottleneck. The PQC augments the latent space, on which a standard outlier detection method is applied to search for anomalous data points within a classical dataset. Using this model and applying it to both standard benchmarking datasets, and a specific use-case dataset which relates to predictive maintenance of gas power plants, we show that the addition of the PQC leads to a performance enhancement in terms of precision, recall, and F1 score. Furthermore, we probe different PQC Ans\"atze and analyse which PQC features make them effective for this task. |
|---|---|
| AbstractList | We propose a Hybrid classical-quantum Autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE) and a parametrized quantum circuit (PQC) that is inserted into its bottleneck. The PQC augments the latent space, on which a standard outlier detection method is applied to search for anomalous data points within a classical dataset. Using this model and applying it to both standard benchmarking datasets, and a specific use-case dataset which relates to predictive maintenance of gas power plants, we show that the addition of the PQC leads to a performance enhancement in terms of precision, recall, and F1 score. Furthermore, we probe different PQC Ans\"atze and analyse which PQC features make them effective for this task. |
| Author | Sakhnenko, Alona Cortiana, Giorgio Mendl, Christian B Bernabé-Moreno, Juan Ghosh, Kumar J B O'Meara, Corey |
| Author_xml | – sequence: 1 givenname: Alona surname: Sakhnenko fullname: Sakhnenko, Alona – sequence: 2 givenname: Corey surname: O'Meara fullname: O'Meara, Corey – sequence: 3 givenname: Kumar surname: Ghosh middlename: J B fullname: Ghosh, Kumar J B – sequence: 4 givenname: Christian surname: Mendl middlename: B fullname: Mendl, Christian B – sequence: 5 givenname: Giorgio surname: Cortiana fullname: Cortiana, Giorgio – sequence: 6 givenname: Juan surname: Bernabé-Moreno fullname: Bernabé-Moreno, Juan |
| BookMark | eNotjVtLwzAYQIM4cG77Ab4VfG7NlzSX-lbqZcJAhL2PL2kCHV2iSSvu3zvQpwPn4Zxbch1icITcAa1qLQR9wPQzfFcMgFVUa9lckSXjHEpdM3ZDNjkfKaVMKiYEX5LH7dmkoS-6EXMeLI7lx4xhmk9FO0_RBRt7lwofU9GGeMLxXDy5ydlpiGFNFh7H7Db_XJH9y_O-25a799e3rt2VKJgqOaPcouh1gwpMLUBY01uppHdQX5xn6EGiQO-1NgacqE3jQAnoUXMDfEXu_7KfKX7NLk-HY5xTuBwPTAJQoBoU_wVHx0qs |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2112.08869 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a527-3203ca5d89a71b4515cbdc676fe149a7f2af16a5aff88bb1e54b9e1751da83b13 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:37:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a527-3203ca5d89a71b4515cbdc676fe149a7f2af16a5aff88bb1e54b9e1751da83b13 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2611010817?pq-origsite=%requestingapplication% |
| PQID | 2611010817 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2611010817 |
| PublicationCentury | 2000 |
| PublicationDate | 20211216 |
| PublicationDateYYYYMMDD | 2021-12-16 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211216 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7794076 |
| SecondaryResourceType | preprint |
| Snippet | We propose a Hybrid classical-quantum Autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE) and a parametrized quantum circuit (PQC) that... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Anomalies Circuits Data analysis Data points Data search Datasets Outliers (statistics) Power plants Predictive maintenance |
| Title | Hybrid Classical-Quantum Autoencoder for Anomaly Detection |
| URI | https://www.proquest.com/docview/2611010817 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3hWGVjdNi_HZkEFWpWBKkCHMlV-SpVoUvKo6L_nHFIYkFgYPFj2YN0558_nL_chdKU8AKHCJ9h0qcKBkC6GxjEgB6MYkZz6qhKbiEYjOpmwuE645TWtch0Tq0CtUmlz5B1A-rB74ACLbhbv2KpG2dfVWkJjEzVtpbKggZq3_VH8_J1l8UgEmNn_es6sind1ePYxW7ZhuteGL4ywX0G4OlkGu_9d0x5qxnyhs320oZMDtF0xOmV-iK6HK_szllOpXlpP4KcSrFjOnV5ZpLZ8pdKZA5DV6SXpnL-tnHtdVLys5AiNB_3x3RDXQgmYhx7ECK_rSx4qynjkigAQihRKkogYDfcfHhmPG5fwkBtDqRCuDgPBNOAGV4ErhOsfo0aSJvoEOQqMxbtdEWhFA64NDbUQPpOEBcwYFp2ii7UlpvVmz6c_Zjj7e_gc7XiWEuJ62CUXqFFkpb5EW3JZzPKsVfuuZemXL9CLHx7j10-FZ6fx |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gavTkO77dgx6LbHe325oYY0QCUQgmHPBE-kxIZMEFVH6U_9HZFfRg4s2Dh542aboz38x80047AKeGIglVASOuzA0JlfYJDkmQOTgjmJY8MHmzibjZ5J2OaBXgfX4XJiurnPvE3FGbgc72yM-R6SN6MIDFV8NnknWNyk5X5y00PmFxZ6evmLKNLusV1O8ZpdXb9k2NzLoKEBlRNChaDrSMDBcy9lWI4Vwro1nMnMVkQcaOSuczGUnnOFfKt1GohMUg6xtct_IDnHYBFkPEOi_CYqveaD1-bepQFiNFDz5PT_O3ws5l-tZ7KWGaRUto0Ez88Pl5IKuu_TMRrOOvy6FNN6Bgk01YzutV9WgLLmrT7KqZl_f0zHBGHiaIkUnfu56MB9njnMamHhJy7zoZ9OXT1KvYcV51lmxD-y9WuwPFZJDYXfAM6kaWyyq0hofSOh5ZpQKhmQiFcyLeg8O54LszUx51v6W-__vnE1iptRv33ft68-4AVmlW_OJT4rNDKI7TiT2CJf0y7o3S4xlsPOj-sZY-AFE9Al4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Classical-Quantum+Autoencoder+for+Anomaly+Detection&rft.jtitle=arXiv.org&rft.au=Sakhnenko%2C+Alona&rft.au=O%27Meara%2C+Corey&rft.au=Ghosh%2C+Kumar+J+B&rft.au=Mendl%2C+Christian+B&rft.date=2021-12-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2112.08869 |