A bibliometric Analysis on Spectrum Sensing in Wireless Networks

Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network regulatory bodies. Such an operation implies that the unlicensed users (secondary wireless spectrum users) have to evacuate the spectrum when the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Nyashadzashe Tamuka, Sibanda, Khulumani
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.09.2023
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network regulatory bodies. Such an operation implies that the unlicensed users (secondary wireless spectrum users) have to evacuate the spectrum when the primary wireless spectrum users (licensed users) are utilizing the frequency bands to avoid interference. Cognitive radio alleviates the spectrum shortage by detecting unoccupied frequency bands. This reduces the underutilization of frequency bands in wireless networks. There have been numerous related studies on spectrum sensing, however, few studies have conducted a bibliometric analysis on this subject. The goal of this study was to conduct a bibliometric analysis on the optimization of spectrum sensing. The PRISMA methodology was the basis for the bibliometric analysis to identify the limitations of the existing spectrum sensing techniques. The findings revealed that various machine learning or hybrid models outperformed the traditional techniques such as matched filter and energy detectors at the lowest signal to noise ratio (SNR). SNR is the ratio of the desired signal magnitude to the background noise magnitude. This study, therefore, recommends researchers propose alternative techniques to optimize (improve) spectrum sensing in wireless networks. More work should be done to develop models that optimize spectrum sensing at low SNR.
AbstractList Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network regulatory bodies. Such an operation implies that the unlicensed users (secondary wireless spectrum users) have to evacuate the spectrum when the primary wireless spectrum users (licensed users) are utilizing the frequency bands to avoid interference. Cognitive radio alleviates the spectrum shortage by detecting unoccupied frequency bands. This reduces the underutilization of frequency bands in wireless networks. There have been numerous related studies on spectrum sensing, however, few studies have conducted a bibliometric analysis on this subject. The goal of this study was to conduct a bibliometric analysis on the optimization of spectrum sensing. The PRISMA methodology was the basis for the bibliometric analysis to identify the limitations of the existing spectrum sensing techniques. The findings revealed that various machine learning or hybrid models outperformed the traditional techniques such as matched filter and energy detectors at the lowest signal to noise ratio (SNR). SNR is the ratio of the desired signal magnitude to the background noise magnitude. This study, therefore, recommends researchers propose alternative techniques to optimize (improve) spectrum sensing in wireless networks. More work should be done to develop models that optimize spectrum sensing at low SNR.
Author Nyashadzashe Tamuka
Sibanda, Khulumani
Author_xml – sequence: 1
  fullname: Nyashadzashe Tamuka
– sequence: 2
  givenname: Khulumani
  surname: Sibanda
  fullname: Sibanda, Khulumani
BookMark eNotjstKAzEYRoMoWGsfwF3A9dTck9k5FG9QdNGCy5LM_JHUaVKTGS9v74CuDpwPDt8FOo0pAkJXlCyFkZLc2PwdPpeMT4IQps0JmjHOaWUEY-doUcqeTF5pJiWfodsGu-D6kA4w5NDiJtr-p4SCU8SbI7RDHg94A7GE-IZDxK8hQw-l4GcYvlJ-L5fozNu-wOKfc7S9v9uuHqv1y8PTqllXVjJdMea9AaG97biqpeGKu5qIVjvpqRCKk5o6OS2i7pTuNGXeSpDCQwcKvOVzdP2XPeb0MUIZdvs05uls2TGjaa3FBP4LC-JMVA
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2310.00278
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-22ff8e47fad36958363b904c7b5f14463091b569549d67d712fa5e54fede6efa3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:21:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-22ff8e47fad36958363b904c7b5f14463091b569549d67d712fa5e54fede6efa3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2871974287?pq-origsite=%requestingapplication%
PQID 2871974287
PQPubID 2050157
ParticipantIDs proquest_journals_2871974287
PublicationCentury 2000
PublicationDate 20230930
PublicationDateYYYYMMDD 2023-09-30
PublicationDate_xml – month: 09
  year: 2023
  text: 20230930
  day: 30
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8461655
SecondaryResourceType preprint
Snippet Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Background noise
Bibliometrics
Cognitive radio
Frequencies
Machine learning
Matched filters
Optimization
Signal to noise ratio
Wireless networks
Title A bibliometric Analysis on Spectrum Sensing in Wireless Networks
URI https://www.proquest.com/docview/2871974287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA3aKrjyjY9asnCbPiaTZGbli4qClsEWqasyeclAndaZWvx8c9OpLgQ3rkLIZpIMNyf3npyD0LmUkWaqYwmPJCMhtZrIWIcE1IoirTqh9GTM5wfR70ejUZxUCbeyolWuYqIP1HqqIEfeBmTvsK9rLmbvBFyjoLpaWWisozqoJHQ9dW_wnWMJuHCImS6LmV66q50Wn9miBaCm5Ytuv0KwP1dut__7RTuonqQzU-yiNZPvoU3P51TlPrq8wjKTE3hbDxL8eKU9gqc5Bsv5efHxhgdAXs9fcZZjIMFOXNDD_SUtvDxAw9ve8OaOVGYJJGWBIEFgbWRCYVNNecwiyqmMO6ESklm48lGHCyTjUNTTXGjRDWzKDAut0YYbm9JDVMunuTlCOLRUGABW7jITOoQWC9MVKYcnp5FScXCMGqv1GFc_fDn-WYyTv4dP0RY4ti8pFw1Uc_M1Z2hDLeZZWTRR_brXT56afh9dL7l_TF6-AE5dp6s
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_Eo4AHG9OE8nAwIEFC1aokqtULdqji2UaSSlgQK_Cj-I76EwIDE1oEpg6UoPjvn73zf3Qdwyrkr7LChDMfltmGZShjcE5aB3YpcETYsnpEx73vM993RyOuX4KOohUFaZeETM0ctpiHekdcR2Wvsqx8XsycDVaMwu1pIaOTboivfX3XIlp53bvT6nlHauh1et40vVQEjsCkzKFXKlRZTgTAdz3ZNx-RewwoZtxXGRqY-QLntYPZLOEywJlWBLW1LSSEdqQJTv3YJKhpFUC9jCg6-r3SowzRAN_PcadYprB4kb9G8hhiqluX4fnn87Bhrrf8zA2xApR_MZLIJJRlvwUrGVg3Tbbi8IjziE-wcgAIDpOisQqYxGWDpaPLySAZIzY8fSBQTpPhOtEsnfk56T3dguIhv3oVyPI3lHhBLmUwibNShmqXxp8dkkwUOFtS6YejRfagW5h9__c7p-Mf2B38Pn8Bqe3jXG_c6fvcQ1lCbPieXVKGs5y6PYDmcP0dpcpxtHQLjBa_UJ7c-_3k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bibliometric+Analysis+on+Spectrum+Sensing+in+Wireless+Networks&rft.jtitle=arXiv.org&rft.au=Nyashadzashe+Tamuka&rft.au=Sibanda%2C+Khulumani&rft.date=2023-09-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2310.00278