A bibliometric Analysis on Spectrum Sensing in Wireless Networks
Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network regulatory bodies. Such an operation implies that the unlicensed users (secondary wireless spectrum users) have to evacuate the spectrum when the p...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
30.09.2023
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network regulatory bodies. Such an operation implies that the unlicensed users (secondary wireless spectrum users) have to evacuate the spectrum when the primary wireless spectrum users (licensed users) are utilizing the frequency bands to avoid interference. Cognitive radio alleviates the spectrum shortage by detecting unoccupied frequency bands. This reduces the underutilization of frequency bands in wireless networks. There have been numerous related studies on spectrum sensing, however, few studies have conducted a bibliometric analysis on this subject. The goal of this study was to conduct a bibliometric analysis on the optimization of spectrum sensing. The PRISMA methodology was the basis for the bibliometric analysis to identify the limitations of the existing spectrum sensing techniques. The findings revealed that various machine learning or hybrid models outperformed the traditional techniques such as matched filter and energy detectors at the lowest signal to noise ratio (SNR). SNR is the ratio of the desired signal magnitude to the background noise magnitude. This study, therefore, recommends researchers propose alternative techniques to optimize (improve) spectrum sensing in wireless networks. More work should be done to develop models that optimize spectrum sensing at low SNR. |
|---|---|
| AbstractList | Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network regulatory bodies. Such an operation implies that the unlicensed users (secondary wireless spectrum users) have to evacuate the spectrum when the primary wireless spectrum users (licensed users) are utilizing the frequency bands to avoid interference. Cognitive radio alleviates the spectrum shortage by detecting unoccupied frequency bands. This reduces the underutilization of frequency bands in wireless networks. There have been numerous related studies on spectrum sensing, however, few studies have conducted a bibliometric analysis on this subject. The goal of this study was to conduct a bibliometric analysis on the optimization of spectrum sensing. The PRISMA methodology was the basis for the bibliometric analysis to identify the limitations of the existing spectrum sensing techniques. The findings revealed that various machine learning or hybrid models outperformed the traditional techniques such as matched filter and energy detectors at the lowest signal to noise ratio (SNR). SNR is the ratio of the desired signal magnitude to the background noise magnitude. This study, therefore, recommends researchers propose alternative techniques to optimize (improve) spectrum sensing in wireless networks. More work should be done to develop models that optimize spectrum sensing at low SNR. |
| Author | Nyashadzashe Tamuka Sibanda, Khulumani |
| Author_xml | – sequence: 1 fullname: Nyashadzashe Tamuka – sequence: 2 givenname: Khulumani surname: Sibanda fullname: Sibanda, Khulumani |
| BookMark | eNotjstKAzEYRoMoWGsfwF3A9dTck9k5FG9QdNGCy5LM_JHUaVKTGS9v74CuDpwPDt8FOo0pAkJXlCyFkZLc2PwdPpeMT4IQps0JmjHOaWUEY-doUcqeTF5pJiWfodsGu-D6kA4w5NDiJtr-p4SCU8SbI7RDHg94A7GE-IZDxK8hQw-l4GcYvlJ-L5fozNu-wOKfc7S9v9uuHqv1y8PTqllXVjJdMea9AaG97biqpeGKu5qIVjvpqRCKk5o6OS2i7pTuNGXeSpDCQwcKvOVzdP2XPeb0MUIZdvs05uls2TGjaa3FBP4LC-JMVA |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2310.00278 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a527-22ff8e47fad36958363b904c7b5f14463091b569549d67d712fa5e54fede6efa3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:21:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a527-22ff8e47fad36958363b904c7b5f14463091b569549d67d712fa5e54fede6efa3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2871974287?pq-origsite=%requestingapplication% |
| PQID | 2871974287 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2871974287 |
| PublicationCentury | 2000 |
| PublicationDate | 20230930 |
| PublicationDateYYYYMMDD | 2023-09-30 |
| PublicationDate_xml | – month: 09 year: 2023 text: 20230930 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8461655 |
| SecondaryResourceType | preprint |
| Snippet | Spectrum scarcity is a prevalent problem in wireless networks due to the strict allotment of the spectrum (frequency bands) to licensed users by network... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Background noise Bibliometrics Cognitive radio Frequencies Machine learning Matched filters Optimization Signal to noise ratio Wireless networks |
| Title | A bibliometric Analysis on Spectrum Sensing in Wireless Networks |
| URI | https://www.proquest.com/docview/2871974287 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA3aKrjyjY9asnCbPiaTZGbli4qClsEWqasyeclAndaZWvx8c9OpLgQ3rkLIZpIMNyf3npyD0LmUkWaqYwmPJCMhtZrIWIcE1IoirTqh9GTM5wfR70ejUZxUCbeyolWuYqIP1HqqIEfeBmTvsK9rLmbvBFyjoLpaWWisozqoJHQ9dW_wnWMJuHCImS6LmV66q50Wn9miBaCm5Ytuv0KwP1dut__7RTuonqQzU-yiNZPvoU3P51TlPrq8wjKTE3hbDxL8eKU9gqc5Bsv5efHxhgdAXs9fcZZjIMFOXNDD_SUtvDxAw9ve8OaOVGYJJGWBIEFgbWRCYVNNecwiyqmMO6ESklm48lGHCyTjUNTTXGjRDWzKDAut0YYbm9JDVMunuTlCOLRUGABW7jITOoQWC9MVKYcnp5FScXCMGqv1GFc_fDn-WYyTv4dP0RY4ti8pFw1Uc_M1Z2hDLeZZWTRR_brXT56afh9dL7l_TF6-AE5dp6s |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_Eo4AHG9OE8nAwIEFC1aokqtULdqji2UaSSlgQK_Cj-I76EwIDE1oEpg6UoPjvn73zf3Qdwyrkr7LChDMfltmGZShjcE5aB3YpcETYsnpEx73vM993RyOuX4KOohUFaZeETM0ctpiHekdcR2Wvsqx8XsycDVaMwu1pIaOTboivfX3XIlp53bvT6nlHauh1et40vVQEjsCkzKFXKlRZTgTAdz3ZNx-RewwoZtxXGRqY-QLntYPZLOEywJlWBLW1LSSEdqQJTv3YJKhpFUC9jCg6-r3SowzRAN_PcadYprB4kb9G8hhiqluX4fnn87Bhrrf8zA2xApR_MZLIJJRlvwUrGVg3Tbbi8IjziE-wcgAIDpOisQqYxGWDpaPLySAZIzY8fSBQTpPhOtEsnfk56T3dguIhv3oVyPI3lHhBLmUwibNShmqXxp8dkkwUOFtS6YejRfagW5h9__c7p-Mf2B38Pn8Bqe3jXG_c6fvcQ1lCbPieXVKGs5y6PYDmcP0dpcpxtHQLjBa_UJ7c-_3k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bibliometric+Analysis+on+Spectrum+Sensing+in+Wireless+Networks&rft.jtitle=arXiv.org&rft.au=Nyashadzashe+Tamuka&rft.au=Sibanda%2C+Khulumani&rft.date=2023-09-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2310.00278 |