Thick tensor ideals of right bounded derived categories

Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with \(H^i(X)=0\) for \(i\gg0\). Then \(D^-(R)\) has the structure of a tensor triangulated category with tensor product \(-\otimes_R^L-\) and unit obj...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Matsui, Hiroki, Takahashi, Ryo
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 17.07.2017
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with \(H^i(X)=0\) for \(i\gg0\). Then \(D^-(R)\) has the structure of a tensor triangulated category with tensor product \(-\otimes_R^L-\) and unit object \(R\). In this paper, we study thick tensor ideals of \(D^-(R)\), i.e., thick subcategories closed under the tensor action by each object in \(D^-(R)\), and investigate the Balmer spectrum \(Spc\,D^-(R)\) of \(D^-(R)\), i.e., the set of prime thick tensor ideals of \(D^-(R)\). First, we give a complete classification of the thick tensor ideals of \(D^-(R)\) generated by bounded complexes, establishing a generalized version of the Hopkins-Neeman smash nilpotence theorem. Then, we define a pair of maps between the Balmer spectrum \(Spc\,D^-(R)\) and the Zariski spectrum \(Spec\,R\), and study their topological properties. After that, we compare several classes of thick tensor ideals of \(D^-(R)\), relating them to specialization-closed subsets of \(Spec\,R\) and Thomason subsets of \(Spc\,D^-(R)\), and construct a counterexample to a conjecture of Balmer. Finally, we explore thick tensor ideals of \(D^-(R)\) in the case where \(R\) is a discrete valuation ring.
AbstractList Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with \(H^i(X)=0\) for \(i\gg0\). Then \(D^-(R)\) has the structure of a tensor triangulated category with tensor product \(-\otimes_R^L-\) and unit object \(R\). In this paper, we study thick tensor ideals of \(D^-(R)\), i.e., thick subcategories closed under the tensor action by each object in \(D^-(R)\), and investigate the Balmer spectrum \(Spc\,D^-(R)\) of \(D^-(R)\), i.e., the set of prime thick tensor ideals of \(D^-(R)\). First, we give a complete classification of the thick tensor ideals of \(D^-(R)\) generated by bounded complexes, establishing a generalized version of the Hopkins-Neeman smash nilpotence theorem. Then, we define a pair of maps between the Balmer spectrum \(Spc\,D^-(R)\) and the Zariski spectrum \(Spec\,R\), and study their topological properties. After that, we compare several classes of thick tensor ideals of \(D^-(R)\), relating them to specialization-closed subsets of \(Spec\,R\) and Thomason subsets of \(Spc\,D^-(R)\), and construct a counterexample to a conjecture of Balmer. Finally, we explore thick tensor ideals of \(D^-(R)\) in the case where \(R\) is a discrete valuation ring.
Author Matsui, Hiroki
Takahashi, Ryo
Author_xml – sequence: 1
  givenname: Hiroki
  surname: Matsui
  fullname: Matsui, Hiroki
– sequence: 2
  givenname: Ryo
  surname: Takahashi
  fullname: Takahashi, Ryo
BookMark eNotjU1LxDAUAIMouK77A7wFPLcmL3lJc5TFL1jw0vuSNi-7WaXRtF38-Rb0NJdh5oZdDnkgxu6kqHWDKB58-UnnWhopawENmAu2AqVk1WiAa7YZx5MQAowFRLVitj2m_oNPNIy58BTIf448R17S4TjxLs9DoMADlXRe2PuJDrkkGm_ZVVxU2vxzzdrnp3b7Wu3eX962j7vKI5iKLPiIjTOi0-g9yigdKt970YiIJsZO9x2QdJZISQwdebTG6WBNb0gHtWb3f9mvkr9nGqf9Kc9lWI57EFZa6xwY9Qs4a0mq
ContentType Paper
Copyright 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1611.02826
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-e72af58960b45aa51f1953aca080f56ffb4cb2e197ee315dbea57694d76c6e4d3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:35:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-e72af58960b45aa51f1953aca080f56ffb4cb2e197ee315dbea57694d76c6e4d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2071779926?pq-origsite=%requestingapplication%
PQID 2071779926
PQPubID 2050157
ParticipantIDs proquest_journals_2071779926
PublicationCentury 2000
PublicationDate 20170717
PublicationDateYYYYMMDD 2017-07-17
PublicationDate_xml – month: 07
  year: 2017
  text: 20170717
  day: 17
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6281928
SecondaryResourceType preprint
Snippet Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Mathematical analysis
Tensors
Title Thick tensor ideals of right bounded derived categories
URI https://www.proquest.com/docview/2071779926
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50V8GTb3wuPXiN2jSP9iQou-jBpege1tOS5qFF2K7tuvjzzcSuHgQvnkIIhZKEyTczH98HcJYIhuYBhnAmDWGJ4iRNtUXaHy8Y1TzWJphNyOEwHY-zvC24NS2tchkTQ6A2lcYaOVZCYimzjIqr2RtB1yjsrrYWGqvQRZWEOFD3Hr9rLFRIj5iTr2ZmkO66UPVHuTj3MAelOlMqfoXg8K4MNv_7R1vQzdXM1tuwYqc7sB74nLrZBTl6KfVrhPT0qo5K4-FgE1UuCrl4VKCXkjWR8ddv4UdkRT1XmDTvwWjQH93cktYjgShOBbGSKsdTn4YUjCvFY4dtMaWVB4KOC-cKpgtq40xam8TcFFb5BCNjRgotLDPJPnSm1dQeQKQK46Gf1JT6jxwq8cWOJfrSphpxGT2Ek-U2TNp73kx-9uDo7-Vj2KD4IAZJyhPozOt3ewprejEvm7oH3ev-MH_ohePzs_zuPn_6BI04pOI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V27TsMwFL0qLQgm3uJRIAOMAeL4kQyIAahatVSVyNAtcmwHIqSmJKXAR_GP2G4DAxJbB6YMUaLo2r4-Off4HoBTn2JjHiBdgpl0sc-JGwRCGdkfSTASxBPSmk2wfj8YDsNBDT6rszBGVlnlRJuoZS4MR26YEI-xMET0evziGtcoU12tLDRm06KrPt70L1t51bnV43uGUOsuumm7c1cBlxNEXcUQT0mggXuCCefES00hiQuuoVNKaJomWCRIeSFTyveITBTXkDzEklFBFZa-fu0SNDSKQKFVCj58UzqIMg3Q_Vnt1HYKu-DFezY916jKdAYNEP2V8e021lr_ZwHYgMaAj1WxCTU12oIVq1YV5Taw6CkTz44R3-eFk0kNdksnTx3LNDiJcYpS0pF6cU311Wi-HnNDCexAtIhP3YX6KB-pPXB4IjWwZQIh_VBq-gx6KfbFpQqEQZ1oH5pV1OP5Ki7jn5Af_H37BFbb0X0v7nX63UNYQ2brt803m1CfFK_qCJbFdJKVxbGdMQ7ECx6gLyb7_qI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thick+tensor+ideals+of+right+bounded+derived+categories&rft.jtitle=arXiv.org&rft.au=Matsui%2C+Hiroki&rft.au=Takahashi%2C+Ryo&rft.date=2017-07-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1611.02826