Thick tensor ideals of right bounded derived categories
Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with \(H^i(X)=0\) for \(i\gg0\). Then \(D^-(R)\) has the structure of a tensor triangulated category with tensor product \(-\otimes_R^L-\) and unit obj...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
17.07.2017
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with \(H^i(X)=0\) for \(i\gg0\). Then \(D^-(R)\) has the structure of a tensor triangulated category with tensor product \(-\otimes_R^L-\) and unit object \(R\). In this paper, we study thick tensor ideals of \(D^-(R)\), i.e., thick subcategories closed under the tensor action by each object in \(D^-(R)\), and investigate the Balmer spectrum \(Spc\,D^-(R)\) of \(D^-(R)\), i.e., the set of prime thick tensor ideals of \(D^-(R)\). First, we give a complete classification of the thick tensor ideals of \(D^-(R)\) generated by bounded complexes, establishing a generalized version of the Hopkins-Neeman smash nilpotence theorem. Then, we define a pair of maps between the Balmer spectrum \(Spc\,D^-(R)\) and the Zariski spectrum \(Spec\,R\), and study their topological properties. After that, we compare several classes of thick tensor ideals of \(D^-(R)\), relating them to specialization-closed subsets of \(Spec\,R\) and Thomason subsets of \(Spc\,D^-(R)\), and construct a counterexample to a conjecture of Balmer. Finally, we explore thick tensor ideals of \(D^-(R)\) in the case where \(R\) is a discrete valuation ring. |
|---|---|
| AbstractList | Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with \(H^i(X)=0\) for \(i\gg0\). Then \(D^-(R)\) has the structure of a tensor triangulated category with tensor product \(-\otimes_R^L-\) and unit object \(R\). In this paper, we study thick tensor ideals of \(D^-(R)\), i.e., thick subcategories closed under the tensor action by each object in \(D^-(R)\), and investigate the Balmer spectrum \(Spc\,D^-(R)\) of \(D^-(R)\), i.e., the set of prime thick tensor ideals of \(D^-(R)\). First, we give a complete classification of the thick tensor ideals of \(D^-(R)\) generated by bounded complexes, establishing a generalized version of the Hopkins-Neeman smash nilpotence theorem. Then, we define a pair of maps between the Balmer spectrum \(Spc\,D^-(R)\) and the Zariski spectrum \(Spec\,R\), and study their topological properties. After that, we compare several classes of thick tensor ideals of \(D^-(R)\), relating them to specialization-closed subsets of \(Spec\,R\) and Thomason subsets of \(Spc\,D^-(R)\), and construct a counterexample to a conjecture of Balmer. Finally, we explore thick tensor ideals of \(D^-(R)\) in the case where \(R\) is a discrete valuation ring. |
| Author | Matsui, Hiroki Takahashi, Ryo |
| Author_xml | – sequence: 1 givenname: Hiroki surname: Matsui fullname: Matsui, Hiroki – sequence: 2 givenname: Ryo surname: Takahashi fullname: Takahashi, Ryo |
| BookMark | eNotjU1LxDAUAIMouK77A7wFPLcmL3lJc5TFL1jw0vuSNi-7WaXRtF38-Rb0NJdh5oZdDnkgxu6kqHWDKB58-UnnWhopawENmAu2AqVk1WiAa7YZx5MQAowFRLVitj2m_oNPNIy58BTIf448R17S4TjxLs9DoMADlXRe2PuJDrkkGm_ZVVxU2vxzzdrnp3b7Wu3eX962j7vKI5iKLPiIjTOi0-g9yigdKt970YiIJsZO9x2QdJZISQwdebTG6WBNb0gHtWb3f9mvkr9nGqf9Kc9lWI57EFZa6xwY9Qs4a0mq |
| ContentType | Paper |
| Copyright | 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1611.02826 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a526-e72af58960b45aa51f1953aca080f56ffb4cb2e197ee315dbea57694d76c6e4d3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:35:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a526-e72af58960b45aa51f1953aca080f56ffb4cb2e197ee315dbea57694d76c6e4d3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2071779926?pq-origsite=%requestingapplication% |
| PQID | 2071779926 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2071779926 |
| PublicationCentury | 2000 |
| PublicationDate | 20170717 |
| PublicationDateYYYYMMDD | 2017-07-17 |
| PublicationDate_xml | – month: 07 year: 2017 text: 20170717 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2017 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.6281928 |
| SecondaryResourceType | preprint |
| Snippet | Let \(R\) be a commutative noetherian ring. Denote by \(D^-(R)\) the derived category of cochain complexes \(X\) of finitely generated \(R\)-modules with... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Mathematical analysis Tensors |
| Title | Thick tensor ideals of right bounded derived categories |
| URI | https://www.proquest.com/docview/2071779926 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50V8GTb3wuPXiN2jSP9iQou-jBpege1tOS5qFF2K7tuvjzzcSuHgQvnkIIhZKEyTczH98HcJYIhuYBhnAmDWGJ4iRNtUXaHy8Y1TzWJphNyOEwHY-zvC24NS2tchkTQ6A2lcYaOVZCYimzjIqr2RtB1yjsrrYWGqvQRZWEOFD3Hr9rLFRIj5iTr2ZmkO66UPVHuTj3MAelOlMqfoXg8K4MNv_7R1vQzdXM1tuwYqc7sB74nLrZBTl6KfVrhPT0qo5K4-FgE1UuCrl4VKCXkjWR8ddv4UdkRT1XmDTvwWjQH93cktYjgShOBbGSKsdTn4YUjCvFY4dtMaWVB4KOC-cKpgtq40xam8TcFFb5BCNjRgotLDPJPnSm1dQeQKQK46Gf1JT6jxwq8cWOJfrSphpxGT2Ek-U2TNp73kx-9uDo7-Vj2KD4IAZJyhPozOt3ewprejEvm7oH3ev-MH_ohePzs_zuPn_6BI04pOI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V27TsMwFL0qLQgm3uJRIAOMAeL4kQyIAahatVSVyNAtcmwHIqSmJKXAR_GP2G4DAxJbB6YMUaLo2r4-Off4HoBTn2JjHiBdgpl0sc-JGwRCGdkfSTASxBPSmk2wfj8YDsNBDT6rszBGVlnlRJuoZS4MR26YEI-xMET0evziGtcoU12tLDRm06KrPt70L1t51bnV43uGUOsuumm7c1cBlxNEXcUQT0mggXuCCefES00hiQuuoVNKaJomWCRIeSFTyveITBTXkDzEklFBFZa-fu0SNDSKQKFVCj58UzqIMg3Q_Vnt1HYKu-DFezY916jKdAYNEP2V8e021lr_ZwHYgMaAj1WxCTU12oIVq1YV5Taw6CkTz44R3-eFk0kNdksnTx3LNDiJcYpS0pF6cU311Wi-HnNDCexAtIhP3YX6KB-pPXB4IjWwZQIh_VBq-gx6KfbFpQqEQZ1oH5pV1OP5Ki7jn5Af_H37BFbb0X0v7nX63UNYQ2brt803m1CfFK_qCJbFdJKVxbGdMQ7ECx6gLyb7_qI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thick+tensor+ideals+of+right+bounded+derived+categories&rft.jtitle=arXiv.org&rft.au=Matsui%2C+Hiroki&rft.au=Takahashi%2C+Ryo&rft.date=2017-07-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1611.02826 |