Topological Approximate Dynamic Programming under Temporal Logic Constraints

In this paper, we develop a Topological Approximate Dynamic Programming (TADP) method for planningin stochastic systems modeled as Markov Decision Processesto maximize the probability of satisfying high-level systemspecifications expressed in Linear Temporal Logic (LTL). Ourmethod includes two steps...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Li, Lening, Fu, Jie
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 26.09.2019
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we develop a Topological Approximate Dynamic Programming (TADP) method for planningin stochastic systems modeled as Markov Decision Processesto maximize the probability of satisfying high-level systemspecifications expressed in Linear Temporal Logic (LTL). Ourmethod includes two steps: First, we propose to decompose theplanning problem into a sequence of sub-problems based on thetopological property of the task automaton which is translatedfrom the LTL constraints. Second, we extend a model-freeapproximate dynamic programming method for value iterationto solve, in an order reverse to a causal dependency of valuefunctions, one for each state in the task automaton. Particularly,we show that the complexity of the TADP does not growpolynomially with the size of the product Markov DecisionProcess (MDP). The correctness and efficiency of the algorithmare demonstrated using a robotic motion planning example.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1907.10510