Topological Approximate Dynamic Programming under Temporal Logic Constraints

In this paper, we develop a Topological Approximate Dynamic Programming (TADP) method for planningin stochastic systems modeled as Markov Decision Processesto maximize the probability of satisfying high-level systemspecifications expressed in Linear Temporal Logic (LTL). Ourmethod includes two steps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Li, Lening, Fu, Jie
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 26.09.2019
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop a Topological Approximate Dynamic Programming (TADP) method for planningin stochastic systems modeled as Markov Decision Processesto maximize the probability of satisfying high-level systemspecifications expressed in Linear Temporal Logic (LTL). Ourmethod includes two steps: First, we propose to decompose theplanning problem into a sequence of sub-problems based on thetopological property of the task automaton which is translatedfrom the LTL constraints. Second, we extend a model-freeapproximate dynamic programming method for value iterationto solve, in an order reverse to a causal dependency of valuefunctions, one for each state in the task automaton. Particularly,we show that the complexity of the TADP does not growpolynomially with the size of the product Markov DecisionProcess (MDP). The correctness and efficiency of the algorithmare demonstrated using a robotic motion planning example.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1907.10510