Theory of functional connections applied to quadratic and nonlinear programming under equality constraints

This paper introduces an efficient approach to solve quadratic and nonlinear programming problems subject to linear equality constraints via the Theory of Functional Connections. This is done without using the traditional Lagrange multiplier technique. More specifically, two distinct expressions (fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Mai, Tina, Mortari, Daniele
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.08.2022
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper introduces an efficient approach to solve quadratic and nonlinear programming problems subject to linear equality constraints via the Theory of Functional Connections. This is done without using the traditional Lagrange multiplier technique. More specifically, two distinct expressions (fully satisfying the equality constraints) are provided, to first solve the constrained quadratic programming problem as an unconstrained one for closed-form solution. Such expressions are derived via using an optimization variable vector, which is called the free vector \(\boldsymbol{g}\) by the Theory of Functional Connections. In the spirit of this Theory, for the equality constrained nonlinear programming problem, its solution is obtained by the Newton's method combining with elimination scheme in optimization. Convergence analysis is supported by a numerical example for the proposed approach.
AbstractList This paper introduces an efficient approach to solve quadratic and nonlinear programming problems subject to linear equality constraints via the Theory of Functional Connections. This is done without using the traditional Lagrange multiplier technique. More specifically, two distinct expressions (fully satisfying the equality constraints) are provided, to first solve the constrained quadratic programming problem as an unconstrained one for closed-form solution. Such expressions are derived via using an optimization variable vector, which is called the free vector \(\boldsymbol{g}\) by the Theory of Functional Connections. In the spirit of this Theory, for the equality constrained nonlinear programming problem, its solution is obtained by the Newton's method combining with elimination scheme in optimization. Convergence analysis is supported by a numerical example for the proposed approach.
Author Mai, Tina
Mortari, Daniele
Author_xml – sequence: 1
  givenname: Tina
  surname: Mai
  fullname: Mai, Tina
– sequence: 2
  givenname: Daniele
  surname: Mortari
  fullname: Mortari, Daniele
BookMark eNotT8tKAzEADKJgrf0AbwHPW_Pe5CjFFxS87L1k86hZtkmbZMX-vevjNMwwzOMGXMYUHQB3GK2Z5Bw96PwVPtdYzQJiCrcXYEEoxY1khFyDVSkDQoiIlnBOF2DoPlzKZ5g89FM0NaSoR2hSjO6XFKiPxzE4C2uCp0nbrGswUEcL5-IxRKczPOa0z_pwCHEPp2hdhm62jqGef5JKzTrEWm7Blddjcat_XILu-anbvDbb95e3zeO20ZyIxhBGkJak5QZTo3zrqZO9Z4IoZhnnjFumJLJSaq6o75nAlgvjW9v3zHlGl-D-L3ZedZpcqbshTXl-VXaEIk4JVkLQb0kRXXA
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1910.04917
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-c2420a8275c13c9f7f3e8bf46294d45545d4980d88a593fb461d56cf7dbb4ef43
IEDL.DBID M7S
IngestDate Mon Jun 30 08:27:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-c2420a8275c13c9f7f3e8bf46294d45545d4980d88a593fb461d56cf7dbb4ef43
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2305321966?pq-origsite=%requestingapplication%
PQID 2305321966
PQPubID 2050157
ParticipantIDs proquest_journals_2305321966
PublicationCentury 2000
PublicationDate 20220825
PublicationDateYYYYMMDD 2022-08-25
PublicationDate_xml – month: 08
  year: 2022
  text: 20220825
  day: 25
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8046879
SecondaryResourceType preprint
Snippet This paper introduces an efficient approach to solve quadratic and nonlinear programming problems subject to linear equality constraints via the Theory of...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Constraints
Equality
Iterative methods
Lagrange multiplier
Mathematical analysis
Mathematical programming
Newton methods
Nonlinear programming
Optimization
Quadratic programming
Title Theory of functional connections applied to quadratic and nonlinear programming under equality constraints
URI https://www.proquest.com/docview/2305321966
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3iUygNr2sSvOBMSiAoGqgg6lKnyUyoSfSRpBf8e20mBiYXRshRZdu7u8_m7-wC4TlLBmHDXEoUU9dkqFQkXdaIEM0OURD6KBbGJdDjk43GWNwm3sqFVbnxicNR6rnyOvO-gMsXOvBi7WSwjrxrlX1cbCY1t0PZdEpJA3Xv5zrEgljrEjOvHzNC6qy-Kj-m65y4pcc9h40am7LcLDnFlsP_fFR2Adi4WpjgEW2Z2BHYDn1OVx-CtrrmHcwt95KoTflB5VksYlFDU8BNWc7hcCe1_BAXFTMNZ3TxDFLDhbr276AZ9rVkBTV2D-em_VAZ1iao8AaPB_ejuIWpkFSJBEXOHQlAsOEqpSrDKbGqx4dIShjKiiUMXVJOMx5pzQTNsJWGJpkzZVEtJjCX4FLTcSswZgLGV0sbSQSRhCBeS29TBTaQYVVirhJyDzmbnJo1plJOfbbv4e_oS7CFfaxA7U6Yd0KqKlbkCO2pdTcuiC9q398P8uRtO3I3yx6f89Qt1CbkC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsQwEB1xCipuceMCykDi2E5SIAoOgYAVEltst_IpLRJ7JMv1UfwjY2cXqOi2oIwiWU5mPPNmPDMP4DDJpBASwxJNNffZKh1J9DpRkgrLtKLeiwWyiazRyFut4mEKPse9ML6scmwTg6E2Pe1z5CcIlXmKx0uIs_4g8qxR_nZ1TKFRq8Wt_XjDkK06vblA-R5RenXZPL-ORqwCkeRU4J4YjWVOM66TVBcuc6nNlWOCFswwdK7csCKPTZ5LXqROMZEYLrTLjFLMOpbistMwiyiCFqFS8PE7pUNFhgA9re9Ow6SwE1m-d16PMSaKjxGKj1jRflv84Maulv7ZD1iG2QfZt-UKTNnuKsyHalVdrcFTPVGA9BzxfrlOZxLta3bCQ0VkDa7JsEcGL9J4NddEdg3p1qNBZElGlWnP6LuJ76Qria07TD_8SlXgzhhW69CcxNdtwAzuxG4CiZ1SLlYIAKVluVS5yxBMUy24To1O2BbsjgXVHh38qv0jpe2_Xx_AwnXz_q59d9O43YFF6rsqYjRafBdmhuWL3YM5_TrsVOV-UDIC7QnL9AuJxhDH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+of+functional+connections+applied+to+quadratic+and+nonlinear+programming+under+equality+constraints&rft.jtitle=arXiv.org&rft.au=Mai%2C+Tina&rft.au=Mortari%2C+Daniele&rft.date=2022-08-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1910.04917