Adversary-resilient Distributed and Decentralized Statistical Inference and Machine Learning: An Overview of Recent Advances Under the Byzantine Threat Model

While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work assumes a non-adversarial setting in which individual nodes---apart from occasional statistical failures---operate as intended within the algorit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Yang, Zhixiong, Gang, Arpita, Bajwa, Waheed U
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 02.06.2020
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work assumes a non-adversarial setting in which individual nodes---apart from occasional statistical failures---operate as intended within the algorithmic framework. In recent years, however, cybersecurity threats from malicious non-state actors and rogue entities have forced practitioners and researchers to rethink the robustness of distributed and decentralized algorithms against adversarial attacks. As a result, we now have a plethora of algorithmic approaches that guarantee robustness of distributed and/or decentralized inference and learning under different adversarial threat models. Driven in part by the world's growing appetite for data-driven decision making, however, securing of distributed/decentralized frameworks for inference and learning against adversarial threats remains a rapidly evolving research area. In this article, we provide an overview of some of the most recent developments in this area under the threat model of Byzantine attacks.
AbstractList While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work assumes a non-adversarial setting in which individual nodes---apart from occasional statistical failures---operate as intended within the algorithmic framework. In recent years, however, cybersecurity threats from malicious non-state actors and rogue entities have forced practitioners and researchers to rethink the robustness of distributed and decentralized algorithms against adversarial attacks. As a result, we now have a plethora of algorithmic approaches that guarantee robustness of distributed and/or decentralized inference and learning under different adversarial threat models. Driven in part by the world's growing appetite for data-driven decision making, however, securing of distributed/decentralized frameworks for inference and learning against adversarial threats remains a rapidly evolving research area. In this article, we provide an overview of some of the most recent developments in this area under the threat model of Byzantine attacks.
Author Yang, Zhixiong
Bajwa, Waheed U
Gang, Arpita
Author_xml – sequence: 1
  givenname: Zhixiong
  surname: Yang
  fullname: Yang, Zhixiong
– sequence: 2
  givenname: Arpita
  surname: Gang
  fullname: Gang, Arpita
– sequence: 3
  givenname: Waheed
  surname: Bajwa
  middlename: U
  fullname: Bajwa, Waheed U
BookMark eNotj9tOAjEYhBujiYg8gHdNvF7s9rAU7xA8kEBIFK_Jv9u_UrLpareg8C6-qxW9mmQy803mgpz6xiMhVznrS60Uu4Hw5Xb9fMh0n-lCDk9IhwuRZ1pyfk56bbthjPFiwJUSHfI9MjsMLYR9FrB1tUMf6cS1MbhyG9FQ8IZOsEp2gNodkvMSIaaAq6CmU28xoK_wmJtDtXYe6QwheOffbunI00Xi7xx-0sbS5yOIpk1InZa-eoOBxjXSu_0BfPwtL9cBIdJ5Y7C-JGcW6hZ7_9oly4f75fgpmy0ep-PRLAPFi6zKByABODBtcm0rgTkrwEABFjG3VsnSSiWU0kwKUeq8SNdNpUsNsoQBiC65_sO-h-Zji21cbZpt8GlxxblmXGjNC_EDmNZvXg
ContentType Paper
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1908.08649
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-c17a4aa2a08d18fc3e106ada6afee1ff54bf4535580433b816553dc8b8a4ba7a3
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:31:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-c17a4aa2a08d18fc3e106ada6afee1ff54bf4535580433b816553dc8b8a4ba7a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2280238826?pq-origsite=%requestingapplication%
PQID 2280238826
PQPubID 2050157
ParticipantIDs proquest_journals_2280238826
PublicationCentury 2000
PublicationDate 20200602
PublicationDateYYYYMMDD 2020-06-02
PublicationDate_xml – month: 06
  year: 2020
  text: 20200602
  day: 02
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.724204
SecondaryResourceType preprint
Snippet While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Cybersecurity
Decision making
Machine learning
Robustness
Statistical inference
Threat models
Title Adversary-resilient Distributed and Decentralized Statistical Inference and Machine Learning: An Overview of Recent Advances Under the Byzantine Threat Model
URI https://www.proquest.com/docview/2280238826
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsNAEF1BAhIVtzijLWhNfHtDg8IlKAgRpIAKzV4QKXLAhkD4F_6VmY0DBRIVrW1Zqxl7jt037zG2F0VRGgstPCMT4cUA2oMEHeInfgAi00mkrBObyDodcXvb6lbj0WUFq5zGRBeoJ2zPhNvGINzUQ0U75k0iccFkg7Xx4dOzRxpSdNZaCWrMsjoRb_k1Vu9eXHbvvvdcwjTDCjqaHG46Kq8mFO_90T5mRbGPxX3c-hWSXZ45W_zfFS7hyuDJFMtsxuQrbN6hPVW5yj6dDHMJxdjDbrs_oJlIfkIUuqR-ZTSHXPMTUwE3-x94hYpSx-kMA34xHRJ0z106OKbhFVPrwwFv5_xqRDHIvPGh5dfuRbw9QRuU3EktcSw8-dH4A0ipwvDeIxWvnJTZBmusd3baOz73Kp0GdGuYeirIAJ0cgi90IKyKDLaZoCEFa0xgbRJLGydE405kaVIEKfpAKyEFxBIyiNZZLR_mZoNxRdhGKxPjhy3sG7XMsiC2JlMtKZNApZtsZ2r6--pfK-9_LL319-1tthBSt0x7KOEOq70Ur2aXzakR2q9osPrRaad73SD0502j-nS-AEIf12E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFROvEWhwB7g6NavtTdICBVC1ahNiFAO5RTNviBS5BQbUtL_wk_gPzKzseGAxK0Hrra1Wu-M5rUz3wfwPMuyIldWRU5LFeWINkJJAollnKAqrcyMD2QT5Xiszs76ky342c3CcFtlZxODobZLwzXyA4ZtIfdC0fDr8y8Rs0bx7WpHobFRixO3vqCUrXk1HJB8X6Tp0bvp2-OoZRWgTaRFZJISaUspxsomypvMUVKEFgv0ziXey1z7XDLoOEN7aZUUUmbWKK0w11hiRsteg-2cdD3uwfZkOJp8_F3USYuSQvRsc3sasMIOsP4-X-2T21X7lD3k_b9sfnBkR7f-syO4Tb-O566-A1uuugs3Qr-qae7Bj0Ak3WC9jmrXzBc81SkGDALM_F3OCqysGLi29XR-SU84rA6o1LgQw27MMXw3Cg2lTrRYs59eisNKvF-xFXUXYunFh7CQONz0SzQikEUJCp3Fm_UlMteGE9PPHH4L5pZb3IfpVRzIA-hVy8o9BGG4O9Nr6eK0T5mv1WWZ5N6Vpq-1TEyxC3udbGettWhmfwT76N-vn8HO8XR0Ojsdjk8ew82Uc3-uCKV70Ptaf3NP4LpZ0VnWT1vNFDC7YkX4BUtvJpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversary-resilient+Distributed+and+Decentralized+Statistical+Inference+and+Machine+Learning%3A+An+Overview+of+Recent+Advances+Under+the+Byzantine+Threat+Model&rft.jtitle=arXiv.org&rft.au=Yang%2C+Zhixiong&rft.au=Gang%2C+Arpita&rft.au=Bajwa%2C+Waheed+U&rft.date=2020-06-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1908.08649