Adversary-resilient Distributed and Decentralized Statistical Inference and Machine Learning: An Overview of Recent Advances Under the Byzantine Threat Model
While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work assumes a non-adversarial setting in which individual nodes---apart from occasional statistical failures---operate as intended within the algorit...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
02.06.2020
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work assumes a non-adversarial setting in which individual nodes---apart from occasional statistical failures---operate as intended within the algorithmic framework. In recent years, however, cybersecurity threats from malicious non-state actors and rogue entities have forced practitioners and researchers to rethink the robustness of distributed and decentralized algorithms against adversarial attacks. As a result, we now have a plethora of algorithmic approaches that guarantee robustness of distributed and/or decentralized inference and learning under different adversarial threat models. Driven in part by the world's growing appetite for data-driven decision making, however, securing of distributed/decentralized frameworks for inference and learning against adversarial threats remains a rapidly evolving research area. In this article, we provide an overview of some of the most recent developments in this area under the threat model of Byzantine attacks. |
|---|---|
| AbstractList | While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work assumes a non-adversarial setting in which individual nodes---apart from occasional statistical failures---operate as intended within the algorithmic framework. In recent years, however, cybersecurity threats from malicious non-state actors and rogue entities have forced practitioners and researchers to rethink the robustness of distributed and decentralized algorithms against adversarial attacks. As a result, we now have a plethora of algorithmic approaches that guarantee robustness of distributed and/or decentralized inference and learning under different adversarial threat models. Driven in part by the world's growing appetite for data-driven decision making, however, securing of distributed/decentralized frameworks for inference and learning against adversarial threats remains a rapidly evolving research area. In this article, we provide an overview of some of the most recent developments in this area under the threat model of Byzantine attacks. |
| Author | Yang, Zhixiong Bajwa, Waheed U Gang, Arpita |
| Author_xml | – sequence: 1 givenname: Zhixiong surname: Yang fullname: Yang, Zhixiong – sequence: 2 givenname: Arpita surname: Gang fullname: Gang, Arpita – sequence: 3 givenname: Waheed surname: Bajwa middlename: U fullname: Bajwa, Waheed U |
| BookMark | eNotj9tOAjEYhBujiYg8gHdNvF7s9rAU7xA8kEBIFK_Jv9u_UrLpareg8C6-qxW9mmQy803mgpz6xiMhVznrS60Uu4Hw5Xb9fMh0n-lCDk9IhwuRZ1pyfk56bbthjPFiwJUSHfI9MjsMLYR9FrB1tUMf6cS1MbhyG9FQ8IZOsEp2gNodkvMSIaaAq6CmU28xoK_wmJtDtXYe6QwheOffbunI00Xi7xx-0sbS5yOIpk1InZa-eoOBxjXSu_0BfPwtL9cBIdJ5Y7C-JGcW6hZ7_9oly4f75fgpmy0ep-PRLAPFi6zKByABODBtcm0rgTkrwEABFjG3VsnSSiWU0kwKUeq8SNdNpUsNsoQBiC65_sO-h-Zji21cbZpt8GlxxblmXGjNC_EDmNZvXg |
| ContentType | Paper |
| Copyright | 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1908.08649 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a526-c17a4aa2a08d18fc3e106ada6afee1ff54bf4535580433b816553dc8b8a4ba7a3 |
| IEDL.DBID | PIMPY |
| IngestDate | Mon Jun 30 09:31:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a526-c17a4aa2a08d18fc3e106ada6afee1ff54bf4535580433b816553dc8b8a4ba7a3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2280238826?pq-origsite=%requestingapplication% |
| PQID | 2280238826 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2280238826 |
| PublicationCentury | 2000 |
| PublicationDate | 20200602 |
| PublicationDateYYYYMMDD | 2020-06-02 |
| PublicationDate_xml | – month: 06 year: 2020 text: 20200602 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2020 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.724204 |
| SecondaryResourceType | preprint |
| Snippet | While the last few decades have witnessed a huge body of work devoted to inference and learning in distributed and decentralized setups, much of this work... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Cybersecurity Decision making Machine learning Robustness Statistical inference Threat models |
| Title | Adversary-resilient Distributed and Decentralized Statistical Inference and Machine Learning: An Overview of Recent Advances Under the Byzantine Threat Model |
| URI | https://www.proquest.com/docview/2280238826 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsNAEF1BAhIVtzijLWhNfHtDg8IlKAgRpIAKzV4QKXLAhkD4F_6VmY0DBRIVrW1Zqxl7jt037zG2F0VRGgstPCMT4cUA2oMEHeInfgAi00mkrBObyDodcXvb6lbj0WUFq5zGRBeoJ2zPhNvGINzUQ0U75k0iccFkg7Xx4dOzRxpSdNZaCWrMsjoRb_k1Vu9eXHbvvvdcwjTDCjqaHG46Kq8mFO_90T5mRbGPxX3c-hWSXZ45W_zfFS7hyuDJFMtsxuQrbN6hPVW5yj6dDHMJxdjDbrs_oJlIfkIUuqR-ZTSHXPMTUwE3-x94hYpSx-kMA34xHRJ0z106OKbhFVPrwwFv5_xqRDHIvPGh5dfuRbw9QRuU3EktcSw8-dH4A0ipwvDeIxWvnJTZBmusd3baOz73Kp0GdGuYeirIAJ0cgi90IKyKDLaZoCEFa0xgbRJLGydE405kaVIEKfpAKyEFxBIyiNZZLR_mZoNxRdhGKxPjhy3sG7XMsiC2JlMtKZNApZtsZ2r6--pfK-9_LL319-1tthBSt0x7KOEOq70Ur2aXzakR2q9osPrRaad73SD0502j-nS-AEIf12E |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFROvEWhwB7g6NavtTdICBVC1ahNiFAO5RTNviBS5BQbUtL_wk_gPzKzseGAxK0Hrra1Wu-M5rUz3wfwPMuyIldWRU5LFeWINkJJAollnKAqrcyMD2QT5Xiszs76ky342c3CcFtlZxODobZLwzXyA4ZtIfdC0fDr8y8Rs0bx7WpHobFRixO3vqCUrXk1HJB8X6Tp0bvp2-OoZRWgTaRFZJISaUspxsomypvMUVKEFgv0ziXey1z7XDLoOEN7aZUUUmbWKK0w11hiRsteg-2cdD3uwfZkOJp8_F3USYuSQvRsc3sasMIOsP4-X-2T21X7lD3k_b9sfnBkR7f-syO4Tb-O566-A1uuugs3Qr-qae7Bj0Ak3WC9jmrXzBc81SkGDALM_F3OCqysGLi29XR-SU84rA6o1LgQw27MMXw3Cg2lTrRYs59eisNKvF-xFXUXYunFh7CQONz0SzQikEUJCp3Fm_UlMteGE9PPHH4L5pZb3IfpVRzIA-hVy8o9BGG4O9Nr6eK0T5mv1WWZ5N6Vpq-1TEyxC3udbGettWhmfwT76N-vn8HO8XR0Ojsdjk8ew82Uc3-uCKV70Ptaf3NP4LpZ0VnWT1vNFDC7YkX4BUtvJpw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversary-resilient+Distributed+and+Decentralized+Statistical+Inference+and+Machine+Learning%3A+An+Overview+of+Recent+Advances+Under+the+Byzantine+Threat+Model&rft.jtitle=arXiv.org&rft.au=Yang%2C+Zhixiong&rft.au=Gang%2C+Arpita&rft.au=Bajwa%2C+Waheed+U&rft.date=2020-06-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1908.08649 |