Enhancing Event-Level Sentiment Analysis with Structured Arguments
Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied. In this paper, we redefine the task...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
31.05.2022
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied. In this paper, we redefine the task as structured event-level SA and propose an End-to-End Event-level Sentiment Analysis (\(\textit{E}^{3}\textit{SA}\)) approach to solve this issue. Specifically, we explicitly extract and model the event structure information for enhancing event-level SA. Extensive experiments demonstrate the great advantages of our proposed approach over the state-of-the-art methods. Noting the lack of the dataset, we also release a large-scale real-world dataset with event arguments and sentiment labelling for promoting more researches\footnote{The dataset is available at https://github.com/zhangqi-here/E3SA}. |
|---|---|
| AbstractList | Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied. In this paper, we redefine the task as structured event-level SA and propose an End-to-End Event-level Sentiment Analysis (\(\textit{E}^{3}\textit{SA}\)) approach to solve this issue. Specifically, we explicitly extract and model the event structure information for enhancing event-level SA. Extensive experiments demonstrate the great advantages of our proposed approach over the state-of-the-art methods. Noting the lack of the dataset, we also release a large-scale real-world dataset with event arguments and sentiment labelling for promoting more researches\footnote{The dataset is available at https://github.com/zhangqi-here/E3SA}. |
| Author | Bai, Qinchun Zhou, Jie Zhang, Qi Chen, Qin He, Liang |
| Author_xml | – sequence: 1 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 2 givenname: Jie surname: Zhou fullname: Zhou, Jie – sequence: 3 givenname: Qin surname: Chen fullname: Chen, Qin – sequence: 4 givenname: Qinchun surname: Bai fullname: Bai, Qinchun – sequence: 5 givenname: Liang surname: He fullname: He, Liang |
| BookMark | eNotj8tOwzAURC0EEqX0A9hZYp1yff3MMlThIUVi0e4rJ3HaVMEBOwnw96SCzcwsRqMzN-TS994RcsdgLYyU8GDDdzutEUGumZSMXZAFcs4SIxCvySrGEwCg0iglX5DH3B-tr1p_oPnk_JAUbnId3c6xfZ-FZt52P7GN9KsdjnQ7hLEaxuBqmoXDeG7EW3LV2C661b8vye4p321ekuLt-XWTFYmVqBJT2wYbZyxUtdGWYSobmSqOQtQlQK1LpUtrleXQQMm4MxUzskxRIOgZlS_J_d_sR-g_RxeH_akfw0wX9-c3TKMSiv8CFjJNKQ |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2205.15511 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a526-8daf2fe8a0cd87a1295f5963244db00d7b67baa6a30f0b13e8c185b9242075533 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:16:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a526-8daf2fe8a0cd87a1295f5963244db00d7b67baa6a30f0b13e8c185b9242075533 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2672172646?pq-origsite=%requestingapplication% |
| PQID | 2672172646 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2672172646 |
| PublicationCentury | 2000 |
| PublicationDate | 20220531 |
| PublicationDateYYYYMMDD | 2022-05-31 |
| PublicationDate_xml | – month: 05 year: 2022 text: 20220531 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7961662 |
| SecondaryResourceType | preprint |
| Snippet | Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Data mining Datasets Sentiment analysis |
| Title | Enhancing Event-Level Sentiment Analysis with Structured Arguments |
| URI | https://www.proquest.com/docview/2672172646 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oaOLJd3wg6cHrQlm6j56MmBJNkDRCDJ7IvopcCrZC_PnurEUPJl48bppNttvdmek333yD0HWknMGznQwbRSyOuCY45u7imUhyoSOhpAdzngd8OBSTSZxWgFtZ0So3NtEbarPQgJG3CePQS4lF7Gb5hqFrFGRXqxYa26gOKgnEU_dG3xgLzKG0-5XM9NJdbVl8zNctqC5tQbDQ-WWCvV_p7_93RQeonsqlLQ7Rls2P0K7nc-ryGPWS_BWUNPJZkACjEQ-AHBSMgBsEeGCwESMJAIgNRl5FdlVYE9wWs5UveztB434yvrvHVbsELClhWBiZkcwKGWojuHR-nGY0BjX2yLi7ZbhiXEnJZDfMQtXpWqGdr1bu_4u4sMFFfaeoli9ye4aCWHeo81yhsC7ACBVVTMZUC6ZiEdrI2HPU2OzItDry5fRnOy7-fnyJ9gjUEPgUfAPV3BvaK7Sj1-_zsmiiei8Zpk9N_yXdKH14TF8-AdRrqMk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELYqCoKJt3gUyABj2sRNYmdAiEerVg1VpVaoW-RXSpe0JLTAj-I_4nMbGJDYOjAng-07f2d__u4OoUuPa8BTbmJLjpXtEYHtkOiNJz1GqPAoZ4bMeYpIt0uHw7BXQp9FLgzIKgtMNEAtJwI48hoOCPRSCrzgZvpiQ9coeF0tWmgs3KKjPt70lS2_bj9o-15h3GwM7lv2squAzXwc2FSyBCeKMkdISpgOd37ih1C03JPaBSXhAeGMBazuJA5364oKHdK4vqZgHV194D814pc9AH-jFOx_UzowRP3H4u3UVAqrsex9PK9CMmsVzibuL8Q3Yay5_c8WYAeVe2yqsl1UUuke2jBqVZHvo7tG-gx1QtKR1QC9ph2B9Mnqg_IJ2E6rKLViAc1s9U2N3FmmpHWbjWYmqe8ADVYx6kO0lk5SdYSsULi-jssOVfr45HCfByz0BQ14SB3lSXWMKoUB4uWGzuOf1T_5-_MF2mwNHqM4anc7p2gLQ7aEERtU0JqerTpD62L-Os6zc-M8FopXbKsvbAIACg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Event-Level+Sentiment+Analysis+with+Structured+Arguments&rft.jtitle=arXiv.org&rft.au=Zhang%2C+Qi&rft.au=Zhou%2C+Jie&rft.au=Chen%2C+Qin&rft.au=Bai%2C+Qinchun&rft.date=2022-05-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2205.15511 |