Enhancing Event-Level Sentiment Analysis with Structured Arguments

Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied. In this paper, we redefine the task...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Zhang, Qi, Zhou, Jie, Chen, Qin, Bai, Qinchun, He, Liang
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 31.05.2022
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied. In this paper, we redefine the task as structured event-level SA and propose an End-to-End Event-level Sentiment Analysis (\(\textit{E}^{3}\textit{SA}\)) approach to solve this issue. Specifically, we explicitly extract and model the event structure information for enhancing event-level SA. Extensive experiments demonstrate the great advantages of our proposed approach over the state-of-the-art methods. Noting the lack of the dataset, we also release a large-scale real-world dataset with event arguments and sentiment labelling for promoting more researches\footnote{The dataset is available at https://github.com/zhangqi-here/E3SA}.
AbstractList Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied. In this paper, we redefine the task as structured event-level SA and propose an End-to-End Event-level Sentiment Analysis (\(\textit{E}^{3}\textit{SA}\)) approach to solve this issue. Specifically, we explicitly extract and model the event structure information for enhancing event-level SA. Extensive experiments demonstrate the great advantages of our proposed approach over the state-of-the-art methods. Noting the lack of the dataset, we also release a large-scale real-world dataset with event arguments and sentiment labelling for promoting more researches\footnote{The dataset is available at https://github.com/zhangqi-here/E3SA}.
Author Bai, Qinchun
Zhou, Jie
Zhang, Qi
Chen, Qin
He, Liang
Author_xml – sequence: 1
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 2
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
– sequence: 3
  givenname: Qin
  surname: Chen
  fullname: Chen, Qin
– sequence: 4
  givenname: Qinchun
  surname: Bai
  fullname: Bai, Qinchun
– sequence: 5
  givenname: Liang
  surname: He
  fullname: He, Liang
BookMark eNotj8tOwzAURC0EEqX0A9hZYp1yff3MMlThIUVi0e4rJ3HaVMEBOwnw96SCzcwsRqMzN-TS994RcsdgLYyU8GDDdzutEUGumZSMXZAFcs4SIxCvySrGEwCg0iglX5DH3B-tr1p_oPnk_JAUbnId3c6xfZ-FZt52P7GN9KsdjnQ7hLEaxuBqmoXDeG7EW3LV2C661b8vye4p321ekuLt-XWTFYmVqBJT2wYbZyxUtdGWYSobmSqOQtQlQK1LpUtrleXQQMm4MxUzskxRIOgZlS_J_d_sR-g_RxeH_akfw0wX9-c3TKMSiv8CFjJNKQ
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2205.15511
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-8daf2fe8a0cd87a1295f5963244db00d7b67baa6a30f0b13e8c185b9242075533
IEDL.DBID M7S
IngestDate Mon Jun 30 09:16:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-8daf2fe8a0cd87a1295f5963244db00d7b67baa6a30f0b13e8c185b9242075533
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2672172646?pq-origsite=%requestingapplication%
PQID 2672172646
PQPubID 2050157
ParticipantIDs proquest_journals_2672172646
PublicationCentury 2000
PublicationDate 20220531
PublicationDateYYYYMMDD 2022-05-31
PublicationDate_xml – month: 05
  year: 2022
  text: 20220531
  day: 31
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7961662
SecondaryResourceType preprint
Snippet Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Data mining
Datasets
Sentiment analysis
Title Enhancing Event-Level Sentiment Analysis with Structured Arguments
URI https://www.proquest.com/docview/2672172646
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oaOLJd3wg6cHrQlm6j56MmBJNkDRCDJ7IvopcCrZC_PnurEUPJl48bppNttvdmek333yD0HWknMGznQwbRSyOuCY45u7imUhyoSOhpAdzngd8OBSTSZxWgFtZ0So3NtEbarPQgJG3CePQS4lF7Gb5hqFrFGRXqxYa26gOKgnEU_dG3xgLzKG0-5XM9NJdbVl8zNctqC5tQbDQ-WWCvV_p7_93RQeonsqlLQ7Rls2P0K7nc-ryGPWS_BWUNPJZkACjEQ-AHBSMgBsEeGCwESMJAIgNRl5FdlVYE9wWs5UveztB434yvrvHVbsELClhWBiZkcwKGWojuHR-nGY0BjX2yLi7ZbhiXEnJZDfMQtXpWqGdr1bu_4u4sMFFfaeoli9ye4aCWHeo81yhsC7ACBVVTMZUC6ZiEdrI2HPU2OzItDry5fRnOy7-fnyJ9gjUEPgUfAPV3BvaK7Sj1-_zsmiiei8Zpk9N_yXdKH14TF8-AdRrqMk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELYqCoKJt3gUyABj2sRNYmdAiEerVg1VpVaoW-RXSpe0JLTAj-I_4nMbGJDYOjAng-07f2d__u4OoUuPa8BTbmJLjpXtEYHtkOiNJz1GqPAoZ4bMeYpIt0uHw7BXQp9FLgzIKgtMNEAtJwI48hoOCPRSCrzgZvpiQ9coeF0tWmgs3KKjPt70lS2_bj9o-15h3GwM7lv2squAzXwc2FSyBCeKMkdISpgOd37ih1C03JPaBSXhAeGMBazuJA5364oKHdK4vqZgHV194D814pc9AH-jFOx_UzowRP3H4u3UVAqrsex9PK9CMmsVzibuL8Q3Yay5_c8WYAeVe2yqsl1UUuke2jBqVZHvo7tG-gx1QtKR1QC9ph2B9Mnqg_IJ2E6rKLViAc1s9U2N3FmmpHWbjWYmqe8ADVYx6kO0lk5SdYSsULi-jssOVfr45HCfByz0BQ14SB3lSXWMKoUB4uWGzuOf1T_5-_MF2mwNHqM4anc7p2gLQ7aEERtU0JqerTpD62L-Os6zc-M8FopXbKsvbAIACg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Event-Level+Sentiment+Analysis+with+Structured+Arguments&rft.jtitle=arXiv.org&rft.au=Zhang%2C+Qi&rft.au=Zhou%2C+Jie&rft.au=Chen%2C+Qin&rft.au=Bai%2C+Qinchun&rft.date=2022-05-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2205.15511