Barriers for fast matrix multiplication from irreversibility

Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central problem in algebraic complexity theory. The best upper bounds on \(\omega\), leading to the state-of-the-art \(\omega \leq 2.37..\), have be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Christandl, Matthias, Vrana, Péter, Zuiddam, Jeroen
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 05.03.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central problem in algebraic complexity theory. The best upper bounds on \(\omega\), leading to the state-of-the-art \(\omega \leq 2.37..\), have been obtained via the laser method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results show limitations for these and related approaches to improve the upper bound on \(\omega\). We introduce a new and more general barrier, providing stronger limitations than in previous work. Concretely, we introduce the notion of "irreversibility" of a tensor and we prove (in some precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a starting tensor in the laser method) cannot give \(\omega = 2\). In quantitative terms, we prove that the best upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor. The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including the small and big Coppersmith--Winograd tensors, that improve limitations shown in previous work. Finally, we discuss barriers on the group-theoretic approach in terms of "monomial" irreversibility.
AbstractList Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central problem in algebraic complexity theory. The best upper bounds on \(\omega\), leading to the state-of-the-art \(\omega \leq 2.37..\), have been obtained via the laser method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results show limitations for these and related approaches to improve the upper bound on \(\omega\). We introduce a new and more general barrier, providing stronger limitations than in previous work. Concretely, we introduce the notion of "irreversibility" of a tensor and we prove (in some precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a starting tensor in the laser method) cannot give \(\omega = 2\). In quantitative terms, we prove that the best upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor. The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including the small and big Coppersmith--Winograd tensors, that improve limitations shown in previous work. Finally, we discuss barriers on the group-theoretic approach in terms of "monomial" irreversibility.
Author Christandl, Matthias
Zuiddam, Jeroen
Vrana, Péter
Author_xml – sequence: 1
  givenname: Matthias
  surname: Christandl
  fullname: Christandl, Matthias
– sequence: 2
  givenname: Péter
  surname: Vrana
  fullname: Vrana, Péter
– sequence: 3
  givenname: Jeroen
  surname: Zuiddam
  fullname: Zuiddam, Jeroen
BookMark eNotjU9LwzAcQIMoOOc-gLeA59b8-6UpeNHhVBh42X38miaQ0TYzScf89g709C6P9-7I9RQnR8gDZ7UyAOwJ0zmcam64qJluQVyRhZCSV0YJcUtWOR8YY0I3AkAuyPMrphRcytTHRD3mQkcsKZzpOA8lHIdgsYQ4UZ_iSENK7nSRQxeGUH7uyY3HIbvVP5dkt3nbrT-q7df75_plWyEIXRnTQMfBOkQA77teWmy5AYWib7jRzBvlmLIdw15pIWyrnVZta9Gjt52WS_L4lz2m-D27XPaHOKfpctwLDoa1UkktfwGfXkyr
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1812.06952
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-8875b15ceaa55ffbd3ca91854a2d71860f84e04cb0ad4622c96e6499cafafcb63
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:32:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-8875b15ceaa55ffbd3ca91854a2d71860f84e04cb0ad4622c96e6499cafafcb63
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2158093436?pq-origsite=%requestingapplication%
PQID 2158093436
PQPubID 2050157
ParticipantIDs proquest_journals_2158093436
PublicationCentury 2000
PublicationDate 20220305
PublicationDateYYYYMMDD 2022-03-05
PublicationDate_xml – month: 03
  year: 2022
  text: 20220305
  day: 05
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7872825
SecondaryResourceType preprint
Snippet Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algebra
Barriers
Complexity theory
Lower bounds
Mathematical analysis
Multiplication
Multiplication & division
Tensors
Upper bounds
Title Barriers for fast matrix multiplication from irreversibility
URI https://www.proquest.com/docview/2158093436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0oaOLJ7_iBpAevC0u3LdvExAQD0YNkoxzwRKbdNuEg4C4S_Pe2a9HEgxePTS_NtJ3Xmb6ZB3DNhRXKCh2ZXMUuQBE8ctsso5RprlWu0aS6EpvoDofpeCyzkHArA61y4xMrR53Ptc-Rtx00pS76Zom4XbxFXjXK_64GCY1tqPtOZawG9V5_mD19Z1mo6Lo3c_L1nVk172pjsZ6uWh7YWrGQvuDolxOukGWw_981HUA9w4UpDmHLzI5gt2J06vIYbnpYeDW6krhnKbFYLsmrb8e_JoFDGJJ1xBeYkGnhWzkVgSv7cQKjQX90dx8FqYQIORWR8xRcdbg2iJxbq_JEo3RIzJDmDnxEbFNmYqZVjDkTlGopjHCxjkaLViuRnEJtNp-ZMyA5o-gAi1plKVMyUV0u06SD_npaB-jn0NjYYhKOezn5McTF39OXsEd9_YAncfEG1JbFu7mCHb1aTsuiGXav6QmYz26UPTxmL59xBKlv
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTgIxFL1B0OjKd3ygdqHLgaHTlplEY-KDQEBCIgt2k7bTJix4OIMIH-U_2g4zmrhwx8L1JM3k3vbcR8_tAbimTDOhmXRUJFxToDDqGDcHjk8klSKSXPkyFZuod7v-YBD0CvCZz8JYWmWOiSlQRxNpe-RVE5p8U30Tj91P3xyrGmVvV3MJjdW2aKvlhynZkrvWk_HvDcaN5_5j08lUBRxOMXPMoaKiRqXinFKtReRJHpigRTiODE4zV_tEuUQKl0eEYSwDppgpCyTXXEvBPLPsBpSIBf-UKfj63dLBrG4SdG91d5q-FFbl8WI4r9goWnFZYKebfiF-GsYau__MAHtQ6vGpivehoMYHsJWyVWVyCLcPPLZKewkyKTfSPJmhkZUaWKCMH5k1IpEdnkHD2D5TFWc84OUR9Nfxv8dQHE_G6gRQRDA3wRhroTERgSfqNPC9GrfQo02ycgrl3PRhdpST8MfuZ39_voLtZv-lE3Za3fY57GA7J2HJarQMxVn8ri5gU85nwyS-TLcNgnDNXvoC_58DFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barriers+for+fast+matrix+multiplication+from+irreversibility&rft.jtitle=arXiv.org&rft.au=Christandl%2C+Matthias&rft.au=Vrana%2C+P%C3%A9ter&rft.au=Zuiddam%2C+Jeroen&rft.date=2022-03-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1812.06952