Barriers for fast matrix multiplication from irreversibility
Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central problem in algebraic complexity theory. The best upper bounds on \(\omega\), leading to the state-of-the-art \(\omega \leq 2.37..\), have be...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
05.03.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central problem in algebraic complexity theory. The best upper bounds on \(\omega\), leading to the state-of-the-art \(\omega \leq 2.37..\), have been obtained via the laser method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results show limitations for these and related approaches to improve the upper bound on \(\omega\). We introduce a new and more general barrier, providing stronger limitations than in previous work. Concretely, we introduce the notion of "irreversibility" of a tensor and we prove (in some precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a starting tensor in the laser method) cannot give \(\omega = 2\). In quantitative terms, we prove that the best upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor. The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including the small and big Coppersmith--Winograd tensors, that improve limitations shown in previous work. Finally, we discuss barriers on the group-theoretic approach in terms of "monomial" irreversibility. |
|---|---|
| AbstractList | Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central problem in algebraic complexity theory. The best upper bounds on \(\omega\), leading to the state-of-the-art \(\omega \leq 2.37..\), have been obtained via the laser method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results show limitations for these and related approaches to improve the upper bound on \(\omega\). We introduce a new and more general barrier, providing stronger limitations than in previous work. Concretely, we introduce the notion of "irreversibility" of a tensor and we prove (in some precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a starting tensor in the laser method) cannot give \(\omega = 2\). In quantitative terms, we prove that the best upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor. The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including the small and big Coppersmith--Winograd tensors, that improve limitations shown in previous work. Finally, we discuss barriers on the group-theoretic approach in terms of "monomial" irreversibility. |
| Author | Christandl, Matthias Zuiddam, Jeroen Vrana, Péter |
| Author_xml | – sequence: 1 givenname: Matthias surname: Christandl fullname: Christandl, Matthias – sequence: 2 givenname: Péter surname: Vrana fullname: Vrana, Péter – sequence: 3 givenname: Jeroen surname: Zuiddam fullname: Zuiddam, Jeroen |
| BookMark | eNotjU9LwzAcQIMoOOc-gLeA59b8-6UpeNHhVBh42X38miaQ0TYzScf89g709C6P9-7I9RQnR8gDZ7UyAOwJ0zmcam64qJluQVyRhZCSV0YJcUtWOR8YY0I3AkAuyPMrphRcytTHRD3mQkcsKZzpOA8lHIdgsYQ4UZ_iSENK7nSRQxeGUH7uyY3HIbvVP5dkt3nbrT-q7df75_plWyEIXRnTQMfBOkQA77teWmy5AYWib7jRzBvlmLIdw15pIWyrnVZta9Gjt52WS_L4lz2m-D27XPaHOKfpctwLDoa1UkktfwGfXkyr |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1812.06952 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a526-8875b15ceaa55ffbd3ca91854a2d71860f84e04cb0ad4622c96e6499cafafcb63 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:32:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a526-8875b15ceaa55ffbd3ca91854a2d71860f84e04cb0ad4622c96e6499cafafcb63 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2158093436?pq-origsite=%requestingapplication% |
| PQID | 2158093436 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2158093436 |
| PublicationCentury | 2000 |
| PublicationDate | 20220305 |
| PublicationDateYYYYMMDD | 2022-03-05 |
| PublicationDate_xml | – month: 03 year: 2022 text: 20220305 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7872825 |
| SecondaryResourceType | preprint |
| Snippet | Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent \(\omega\), is a central... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algebra Barriers Complexity theory Lower bounds Mathematical analysis Multiplication Multiplication & division Tensors Upper bounds |
| Title | Barriers for fast matrix multiplication from irreversibility |
| URI | https://www.proquest.com/docview/2158093436 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7opuDJ3_hjjh68duvSJGtBECYbenAU3WGexkuawA5us51j_ve-1EzBgxcvhVIIIQ3f9_LyvfcBXCMmQqEyIU-RHirtEA6KKLRpJKxikUyVrcwmusNhMh6nmU-4lV5WucHECqjzuXY58jZRU0Knbx7L28Vb6Fyj3O2qt9DYhrrrVMZrUO_1h9nTd5aFyS7FzPHXdWbVvKuNxXq6ajlia9FMXMHRLxCumGWw_985HUA9w4UpDmHLzI5gt1J06vIYbnpYODe6MqCwNLBYLoNX145_HXgNoU_WBa7AJJgWrpVT4bWyHycwGvRHd_eht0oIUTAZElII1RHaIAphrcpjjSkxMUeWE_nIyCbcRFyrCHMuGdOpNJLOOhotWq1kfAq12XxmziCwNEqupe4oTdGeSZCLWHKbdGmUxMTqHBqbtZj47V5Ofhbi4u_Pl7DHXP2AE3GJBtSWxbu5gh29Wk7Loun_XtMJMJ_pLXt4zF4-AUbDqdc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6Vl2DiLd5kgDFt6thuIoGQeImqpapEh27V2bGlDrQlKQV-FP-Rc0hAYmBjYMkSyUrO9ncPf-cP4AQxEgqV8XmM9FBxnXBQBL6NA2EVC2SsbC420eh0on4_7lbgveyFcbTKEhNzoE7G2tXIa-SaIsq-eSgvJk--U41yp6ulhMbnsmiZtxdK2bLz5jXN7yljtze9qzu_UBXwUTDp06YSqi60QRTCWpWEGmNyWhxZQjgtAxtxE3CtAky4ZEzH0khKCzRatFrJkIadgwXuwD9nCj58lXSYbFCAHn6eneY3hdUwfR3Oqs6LVum3XXfTD8TP3djt6j8zwBosdHFi0nWomNEGLOVsVZ1twtklpk5pL_Mo5PYsZlPv0UkNvHoFP7IoRHquecYbpu6aqrTgAb9tQe8vvncb5kfjkdkBz9IoiZa6rjRFsiZCLkLJbdSgUSITql04KE0_KLZyNvi2-97vr49h-a533x60m53WPqww1yfhyGriAOan6bM5hEU9mw6z9ChfNh4M_niWPgDEjgN8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barriers+for+fast+matrix+multiplication+from+irreversibility&rft.jtitle=arXiv.org&rft.au=Christandl%2C+Matthias&rft.au=Vrana%2C+P%C3%A9ter&rft.au=Zuiddam%2C+Jeroen&rft.date=2022-03-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1812.06952 |