Sharp Analysis of RLS-based Digital Precoder with Limited PAPR in Massive MIMO

This paper focuses on the performance analysis of a class of limited peak-to-average power ratio (PAPR) precoders for downlink multi-user massive multiple-input multiple-output (MIMO) systems. Contrary to conventional precoding approaches based on simple linear precoders such as maximum ratio transm...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Ma, Xiuxiu, Kammoun, Abla, Alrashdi, Ayed M, Ballal, Tarig, Al-Naffouri, Tareq Y, Mohamed-Slim Alouini
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 30.09.2022
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper focuses on the performance analysis of a class of limited peak-to-average power ratio (PAPR) precoders for downlink multi-user massive multiple-input multiple-output (MIMO) systems. Contrary to conventional precoding approaches based on simple linear precoders such as maximum ratio transmission (MRT) and regularized zero-forcing (RZF), the precoders in this paper are obtained by solving a convex optimization problem. To be specific, these precoders are designed so that the power of each precoded symbol entry is restricted, and the PAPR at each antenna is tunable. By using the Convex Gaussian Min-max Theorem (CGMT), we analytically characterize the empirical distribution of the precoded vector and the joint empirical distribution between the distortion and the intended symbol vector. This allows us to study the performance of these precoders in terms of per-antenna power, per-user distortion power, signal-to-noise and distortion ratio (SINAD), and bit error probability. We show that for this class of precoders, there is an optimal transmit per-antenna power that maximizes the system performance in terms of SINAD and bit error probability.
AbstractList This paper focuses on the performance analysis of a class of limited peak-to-average power ratio (PAPR) precoders for downlink multi-user massive multiple-input multiple-output (MIMO) systems. Contrary to conventional precoding approaches based on simple linear precoders such as maximum ratio transmission (MRT) and regularized zero-forcing (RZF), the precoders in this paper are obtained by solving a convex optimization problem. To be specific, these precoders are designed so that the power of each precoded symbol entry is restricted, and the PAPR at each antenna is tunable. By using the Convex Gaussian Min-max Theorem (CGMT), we analytically characterize the empirical distribution of the precoded vector and the joint empirical distribution between the distortion and the intended symbol vector. This allows us to study the performance of these precoders in terms of per-antenna power, per-user distortion power, signal-to-noise and distortion ratio (SINAD), and bit error probability. We show that for this class of precoders, there is an optimal transmit per-antenna power that maximizes the system performance in terms of SINAD and bit error probability.
Author Ma, Xiuxiu
Mohamed-Slim Alouini
Al-Naffouri, Tareq Y
Ballal, Tarig
Alrashdi, Ayed M
Kammoun, Abla
Author_xml – sequence: 1
  givenname: Xiuxiu
  surname: Ma
  fullname: Ma, Xiuxiu
– sequence: 2
  givenname: Abla
  surname: Kammoun
  fullname: Kammoun, Abla
– sequence: 3
  givenname: Ayed
  surname: Alrashdi
  middlename: M
  fullname: Alrashdi, Ayed M
– sequence: 4
  givenname: Tarig
  surname: Ballal
  fullname: Ballal, Tarig
– sequence: 5
  givenname: Tareq
  surname: Al-Naffouri
  middlename: Y
  fullname: Al-Naffouri, Tareq Y
– sequence: 6
  fullname: Mohamed-Slim Alouini
BookMark eNotj81Kw0AURgdRsNY-gLsB16mTO7mTyTLUv0JiQ9t9mWRu7JSY1Exa9e0N6Oo7cODAd8Mu264lxu5CMY80ongw_bc7zwEEzkMQcXzBJiBlGOgI4JrNvD8IIUDFgCgn7G2zN_2Rp61pfrzzvKv5OtsEpfFk-aN7d4NpeNFT1Vnq-Zcb9jxzH24YbZEWa-5anhvv3Zl4vsxXt-yqNo2n2f9O2fb5abt4DbLVy3KRZoFBUIFGCoVNKkyQYi0ooZG1jQSGJUgBUOmqrI3SdYWWTG2RakOlsqLUcQgop-z-L3vsu88T-WF36E79-MHvQKkEIEap5C8JZVBS
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2205.12077
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-85e10d9c595e780e9e9c58d4051b23022c8cbfa68fc5deafd5efaeb6d0b871253
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:30:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-85e10d9c595e780e9e9c58d4051b23022c8cbfa68fc5deafd5efaeb6d0b871253
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2669227536?pq-origsite=%requestingapplication%
PQID 2669227536
PQPubID 2050157
ParticipantIDs proquest_journals_2669227536
PublicationCentury 2000
PublicationDate 20220930
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 20220930
  day: 30
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.808487
SecondaryResourceType preprint
Snippet This paper focuses on the performance analysis of a class of limited peak-to-average power ratio (PAPR) precoders for downlink multi-user massive...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Antennas
Codes
Convexity
Distortion
Empirical analysis
Optimization
Title Sharp Analysis of RLS-based Digital Precoder with Limited PAPR in Massive MIMO
URI https://www.proquest.com/docview/2669227536
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgBYmJb_FRKg-sblMnju0J8VVRiYSo7VCmyrEvKEtbklLx87HTFAYkJrZIzmA5yrt357v3ELoOgPu-9oB4kmoSgACiFBjCLB6ngQ64L9ZmEzyOxWQik3o8uqzbKjeYWAH1Wu3Z9W1bEO6auXYV864NK5JSS7XDm8U7cR5S7q61NtTYRk0nvOU1UDMZRMnrd82FhtwyaH99uVlJeXVV8ZmvOm7atNOjHue_ILmKM_39_93hgd2ZWkBxiLZgdoR2q25PXR6j2Mk0L_BGkATPMzx8HhEX0Qx-yN-ckQhOXK5soMCuVIvrQSic3CZDnM9wZEm3BUocDaKXEzTuP47vn0htrEAUoyERDHqekZpJBlx4IME-C2OpWy-1GQmlWug0U6HINDOgMsMgU5CGxkttekWZf4oas_kMzhC2DEIpm0RmTtRHptzyNZ3ZFyHjzIQSzlFrc1bT-ucopz9Hc_H38iXao27aoGrPaKHGsviAK7SjV8u8LNqoefcYJ8O2a9cctetv_QUB5Ljt
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEN4Q0OjJd3yg7kGPC2X72PZgjBEJBIoNcsAT2e5ODRfAgqg_yv_obKF6MPHmwVuT9rKd2W--md2Zj5ALB4RtKwuYFXDFHPCBSQmauYjHsaMcYftLsQnR7fqDQRAVyEfeC2OuVeaYmAG1nihTI69iIAk4R3LtXU-fmVGNMqeruYTG0i3a8P6KKdvsqlVH-15y3rjr3zbZSlWASZd7zHehZulAuYELwrcgAHz2NfKWWox0nHPlqziRnp8oV4NMtAuJhNjTVoy5BTciEYj4JQd93SqSUtQKo8evog73BFJ0e3l6ms0Kq8r0bbSomHbWSo1bQvzA_CyQNbb-2S_YxqXLKaQ7pADjXbKe3VdVsz3SNYOmpzQfqUInCe11HpiJyZrWR09GCoVGJtvXkFJTbKarVi4a3UQ9OhrTENMGhHoatsL7fdL_ixUckOJ4MoZDQpEDSYlpcGLGEgWxQMapEvwQEuFqL4AjUs6NMVxt79nw2xLHv78-JxvNftgZdlrd9gnZ5KZ3IrtsUibFefoCp2RNLeajWXq2ciVKhn9suU9ErAiX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+Analysis+of+RLS-based+Digital+Precoder+with+Limited+PAPR+in+Massive+MIMO&rft.jtitle=arXiv.org&rft.au=Ma%2C+Xiuxiu&rft.au=Kammoun%2C+Abla&rft.au=Alrashdi%2C+Ayed+M&rft.au=Ballal%2C+Tarig&rft.date=2022-09-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2205.12077