Fourier Galerkin approximation of mean field control problems

The purpose of this work is to provide a finite dimensional approximation of the solution to a mean field optimal control problem set on the \(d\)-dimensional torus. The approximation is obtained by means of a Fourier-Galerkin method, the main principle of which is to convolve probability measures o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Delarue, François, Martini, Mattia
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 23.10.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The purpose of this work is to provide a finite dimensional approximation of the solution to a mean field optimal control problem set on the \(d\)-dimensional torus. The approximation is obtained by means of a Fourier-Galerkin method, the main principle of which is to convolve probability measures on the torus by the Dirichlet kernel or, equivalently, to truncate the Fourier expansion of probability measures on the torus. However, this operation has the main feature not to leave the space of probability measures invariant, which drawback is know as \textit{Gibbs}' phenomenon. In spite of this, we manage to prove that, for initial conditions in the `interior' of the space of probability measures and for sufficiently large levels of truncation, the Fourier-Galerkin method induces a new finite dimensional control problem whose trajectories take values in the space of probability measures with a finite number of Fourier coefficients. Our main result asserts that, whenever the cost functionals are smooth and convex, the distance between the optimal trajectories of the original and approximating control problems decreases at a polynomial rate as the index of truncation in the Fourier-Galerkin method tends to \(\infty\). A similar result holds for the distance between the corresponding value functions. From a practical point of view, our approach provides an efficient strategy to approximate mean field control optimizers by finite dimensional parameters and opens new perspectives for the numerical analysis of mean field control problems. It may be also applied to discretize more general mean field game systems.
AbstractList The purpose of this work is to provide a finite dimensional approximation of the solution to a mean field optimal control problem set on the \(d\)-dimensional torus. The approximation is obtained by means of a Fourier-Galerkin method, the main principle of which is to convolve probability measures on the torus by the Dirichlet kernel or, equivalently, to truncate the Fourier expansion of probability measures on the torus. However, this operation has the main feature not to leave the space of probability measures invariant, which drawback is know as \textit{Gibbs}' phenomenon. In spite of this, we manage to prove that, for initial conditions in the `interior' of the space of probability measures and for sufficiently large levels of truncation, the Fourier-Galerkin method induces a new finite dimensional control problem whose trajectories take values in the space of probability measures with a finite number of Fourier coefficients. Our main result asserts that, whenever the cost functionals are smooth and convex, the distance between the optimal trajectories of the original and approximating control problems decreases at a polynomial rate as the index of truncation in the Fourier-Galerkin method tends to \(\infty\). A similar result holds for the distance between the corresponding value functions. From a practical point of view, our approach provides an efficient strategy to approximate mean field control optimizers by finite dimensional parameters and opens new perspectives for the numerical analysis of mean field control problems. It may be also applied to discretize more general mean field game systems.
Author Delarue, François
Martini, Mattia
Author_xml – sequence: 1
  givenname: François
  surname: Delarue
  fullname: Delarue, François
– sequence: 2
  givenname: Mattia
  surname: Martini
  fullname: Martini, Mattia
BookMark eNotjkFLwzAYhoMoOOd-gLeA59YvX5qkPXiQ4TZh4GX3kaRfoLNNZtrJfr4FPb2Xh_d5HthtTJEYexJQVrVS8GLztfspsQJZCqUrvGELlFIUdYV4z1bjeAIA1AaVkgv2ukmX3FHmW9tT_uoit-dzTtdusFOXIk-BD2QjDx31LfcpTjn1fCZcT8P4yO6C7Uda_e-SHTbvh_Wu2H9uP9Zv-8Iq1IUWEIRxnqqWvHcGbCOcQknOz4UewRkjtaZGKjTgUdauDm1w2EDwDbZyyZ7_bmfv94XG6Xiaq-NsPGJTaw0CpZa_hG1L-w
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2403.15642
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-610f17bce4deccb70a91b523ebc156c20b77366e935270c238b8fdfb290fc92d3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:24:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-610f17bce4deccb70a91b523ebc156c20b77366e935270c238b8fdfb290fc92d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2986601236?pq-origsite=%requestingapplication%
PQID 2986601236
PQPubID 2050157
ParticipantIDs proquest_journals_2986601236
PublicationCentury 2000
PublicationDate 20241023
PublicationDateYYYYMMDD 2024-10-23
PublicationDate_xml – month: 10
  year: 2024
  text: 20241023
  day: 23
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8869151
SecondaryResourceType preprint
Snippet The purpose of this work is to provide a finite dimensional approximation of the solution to a mean field optimal control problem set on the \(d\)-dimensional...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Approximation
Dirichlet problem
Galerkin method
Initial conditions
Numerical analysis
Optimal control
Polynomials
Toruses
Trajectory control
Trajectory optimization
Title Fourier Galerkin approximation of mean field control problems
URI https://www.proquest.com/docview/2986601236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BCxITb_EolQfWtImdOvGEBGqBgSqCDmWqbMeWOpC2San68zm7KQxILCyWrEiRcxfd8_N9ALdpbDnG-WngmnxB3MNF9gTDRaVK6tDBdDzZRDIcpuOxyOqCW1XDKrc20RvqfKZdjbxLRepeShm_my8Cxxrluqs1hcYuNN2UhMhD996-ayyUJxgxs00z04_u6spyPV113BC6jhuTQn-ZYO9XBof_PdERNDM5N-Ux7JjiBPY9nlNXp4BexXPRkUd0AK4cTvzw8PV0c1ORzCz5MLIgHsBGarw6qdllqjMYDfqjh6egZkpAmVKO6V9oo0RpE-eoEZWEUkQKM0yjNH6kpqFKEsa5ERhtJaFGL61Sm1tFRWi1oDk7h0YxK8wFECUFN9aiCiXHZChONTp5LqNQ9qRkTFxCayuMSf23V5MfSVz9_fgaDigGBc72U9aCxrL8NDewp1fLaVW2oXnfH2avba9E3GXPL9n7F7cqpw0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_Eo4AHGlNRJnXhADEBp1VJVokO3yHYcqQNpaUopP4r_yNlNYEBi68DiJZJjnc93350_3wFchn7CEOeHjrnkc_wGDqLBPRxkKIVyDU3HNpsIer1wOOT9EnwWb2EMrbKwidZQx2NlcuTXlIdmUuqx28mrY7pGmdvVooXGUi06-uMdQ7bspn2P-3tFafNhcNdy8q4C-H_KMFRyk3oglfZjXL0MXMHrEqMxLRWGMoq6Mgg8xjRHZBK4Cj2aDJM4kZS7ieI09nDaNaggiqDcMgWfv1M6lAUI0L3l3amtFHYtpovRvGZq3tVMVRb6y-JbN9bc_mcC2IFKX0z0dBdKOt2DDctWVdk-oM-0nfbII7o3k-wntjT6YrR8h0nGCXnRIiWWnkdyNj7Je-dkBzBYxYIPoZyOU30ERArOdJKgggqGoZ4fKoQwTNRd0RDC8_gxVAvZR_lZzqIfwZ_8_fkCNluDp27Ubfc6p7BFEf4YL0e9KpRn0zd9ButqPhtl03OrNwSiFW_TFzW1ABA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fourier+Galerkin+approximation+of+mean+field+control+problems&rft.jtitle=arXiv.org&rft.au=Delarue%2C+Fran%C3%A7ois&rft.au=Martini%2C+Mattia&rft.date=2024-10-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2403.15642