Toward Taming the Overhead Monster for Data-Flow Integrity
Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been quite limited so far because of the prohibitive performance overhead it incurs. Moreover, the overhead is enormously difficult to overcome withou...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
29.11.2021
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been quite limited so far because of the prohibitive performance overhead it incurs. Moreover, the overhead is enormously difficult to overcome without substantially lowering the DFI criterion. In this work, an analysis is performed to understand the main factors contributing to the overhead. Accordingly, a hardware-assisted parallel approach is proposed to tackle the overhead challenge. Simulations on SPEC CPU 2006 benchmark show that the proposed approach can completely enforce the DFI defined in the original seminal work while reducing performance overhead by 4x, on average. |
|---|---|
| AbstractList | Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been quite limited so far because of the prohibitive performance overhead it incurs. Moreover, the overhead is enormously difficult to overcome without substantially lowering the DFI criterion. In this work, an analysis is performed to understand the main factors contributing to the overhead. Accordingly, a hardware-assisted parallel approach is proposed to tackle the overhead challenge. Simulations on SPEC CPU 2006 benchmark show that the proposed approach can completely enforce the DFI defined in the original seminal work while reducing performance overhead by 4x, on average. |
| Author | Lang, Feng Huang, Jiayi Huang, Jeff Hu, Jiang |
| Author_xml | – sequence: 1 givenname: Feng surname: Lang fullname: Lang, Feng – sequence: 2 givenname: Jiayi surname: Huang fullname: Huang, Jiayi – sequence: 3 givenname: Jeff surname: Huang fullname: Huang, Jeff – sequence: 4 givenname: Jiang surname: Hu fullname: Hu, Jiang |
| BookMark | eNotjk1PAjEUABujiYj8AG9NPO_avn7Y9WZQlATDwb2Tt7tvYQm22hbQfy-JnuY2M1fs3AdPjN1IUWpnjLjD-D0cSpACSimEkmdsBErJwmmASzZJaSuEAHsPxqgRe6jDEWPHa_wY_JrnDfHlgeKGsONvwadMkfch8ifMWMx24cjnPtM6Dvnnml30uEs0-eeYvc-e6-lrsVi-zKePiwIN2AIsWUSlRYtEum9la1wjFZpG9q7tKul6pNMfAemmEo11zlSNc2gcVV2nxuz2z_oZw9eeUl5twz76U3AFugIJVlqrfgGp6Uoa |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2102.10031 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (subscription) ProQuest Central Premium ProQuest One Academic (New) Proquest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a526-26e6aa340caee4fc1c58b13a5b1f8cd918fae331e2e4b90b68859b88a58e9dd3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:05:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a526-26e6aa340caee4fc1c58b13a5b1f8cd918fae331e2e4b90b68859b88a58e9dd3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2492126166?pq-origsite=%requestingapplication% |
| PQID | 2492126166 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2492126166 |
| PublicationCentury | 2000 |
| PublicationDate | 20211129 |
| PublicationDateYYYYMMDD | 2021-11-29 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211129 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7777007 |
| SecondaryResourceType | preprint |
| Snippet | Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Integrity |
| Title | Toward Taming the Overhead Monster for Data-Flow Integrity |
| URI | https://www.proquest.com/docview/2492126166 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA3aKnjyGz9qycFr7Cab3U28CGqLBVsXW6SeZDbJQkHbulurP98kbtWTF48hEMIkmXmZebxB6JTTRAVhpgkTOiCcJYxAkEgCCdWRyG2E9smch9uk3xejkUyrhFtZ0SqXPtE7aj1VLkfecsp21ML9OL6YvRLXNcpVV6sWGquo7lQSqKfuDb5zLCxOLGIOv4qZXrqrBcXHeHHm_jmOH1C1lvvtgn1c6Wz-d0dbqJ7CzBTbaMVMdtC653OqchedDz0dFg_hxcYmbFEevrOX1npejXsOEpoCW7iKr2EOpPM8fcddrxthMfkeGnTaw6sbUrVJIBCxmLDYxAAhDxQYw3NFVSQyGkKU0VwoLanIwYQhNczwTAZZLEQkMyEgEkZqHe6j2mQ6MQcIZxzsk5SKa-GUwSLgFq5oE_FE2fUEPUSNpSGeqptePv1Y4ejv6WO0wRwfhFLCZAPV5sWbOUFrajEfl0UT1S_b_fS-6Q_QjtJuL338BP2GpKA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ6gaPTkOz5Qe9BjZdvt7rYmxoNIJCKSQAwnSbctCYkCLoj6n_yRtgXUkzcOnps07Uw788306wzACSOJCsJUY8p1gBlNKJZBIrBMiI54x3pon8x5qCa1Gm-1RD0Hn7O_MI5WObOJ3lDrvnI58qKrbEcs3I_jy8ELdl2j3OvqrIXG5Fjcmo83G7INLyolq99TSsvXzasbPO0qgGVEY0xjE0sZskBJY1hHERXxlIQySkmHKy0I70gThsRQw1IRpDHnkUg5lxE3QuvQzroAeQsiqPBEwcZ3RofGicXn4eTp1BcKK8rsvTs-c1GVYyNMG9n9Nvjei5XX_tf-1yFflwOTbUDO9DZh2XNV1XALzpue6oua8tn6XWQRLLq3F9J6FY3uHNw1GbJQHJXkSOLyU_8NVXxNDBtvbENjDovdgcVev2d2AaVMWnMjFNPcVT2LJLNQTJuIJcrOx8keFGZib09v8bD9I_P9v4ePYeWmeVdtVyu12wNYpY73QgimogCLo-zVHMKSGo-6w-zIHxkEj_PV0Bcbbf5L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Taming+the+Overhead+Monster+for+Data-Flow+Integrity&rft.jtitle=arXiv.org&rft.au=Lang%2C+Feng&rft.au=Huang%2C+Jiayi&rft.au=Huang%2C+Jeff&rft.au=Hu%2C+Jiang&rft.date=2021-11-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2102.10031 |