Toward Taming the Overhead Monster for Data-Flow Integrity

Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been quite limited so far because of the prohibitive performance overhead it incurs. Moreover, the overhead is enormously difficult to overcome withou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Lang, Feng, Huang, Jiayi, Huang, Jeff, Hu, Jiang
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 29.11.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been quite limited so far because of the prohibitive performance overhead it incurs. Moreover, the overhead is enormously difficult to overcome without substantially lowering the DFI criterion. In this work, an analysis is performed to understand the main factors contributing to the overhead. Accordingly, a hardware-assisted parallel approach is proposed to tackle the overhead challenge. Simulations on SPEC CPU 2006 benchmark show that the proposed approach can completely enforce the DFI defined in the original seminal work while reducing performance overhead by 4x, on average.
AbstractList Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been quite limited so far because of the prohibitive performance overhead it incurs. Moreover, the overhead is enormously difficult to overcome without substantially lowering the DFI criterion. In this work, an analysis is performed to understand the main factors contributing to the overhead. Accordingly, a hardware-assisted parallel approach is proposed to tackle the overhead challenge. Simulations on SPEC CPU 2006 benchmark show that the proposed approach can completely enforce the DFI defined in the original seminal work while reducing performance overhead by 4x, on average.
Author Lang, Feng
Huang, Jiayi
Huang, Jeff
Hu, Jiang
Author_xml – sequence: 1
  givenname: Feng
  surname: Lang
  fullname: Lang, Feng
– sequence: 2
  givenname: Jiayi
  surname: Huang
  fullname: Huang, Jiayi
– sequence: 3
  givenname: Jeff
  surname: Huang
  fullname: Huang, Jeff
– sequence: 4
  givenname: Jiang
  surname: Hu
  fullname: Hu, Jiang
BookMark eNotjk1PAjEUABujiYj8AG9NPO_avn7Y9WZQlATDwb2Tt7tvYQm22hbQfy-JnuY2M1fs3AdPjN1IUWpnjLjD-D0cSpACSimEkmdsBErJwmmASzZJaSuEAHsPxqgRe6jDEWPHa_wY_JrnDfHlgeKGsONvwadMkfch8ifMWMx24cjnPtM6Dvnnml30uEs0-eeYvc-e6-lrsVi-zKePiwIN2AIsWUSlRYtEum9la1wjFZpG9q7tKul6pNMfAemmEo11zlSNc2gcVV2nxuz2z_oZw9eeUl5twz76U3AFugIJVlqrfgGp6Uoa
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2102.10031
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic (New)
Proquest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-26e6aa340caee4fc1c58b13a5b1f8cd918fae331e2e4b90b68859b88a58e9dd3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:05:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-26e6aa340caee4fc1c58b13a5b1f8cd918fae331e2e4b90b68859b88a58e9dd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2492126166?pq-origsite=%requestingapplication%
PQID 2492126166
PQPubID 2050157
ParticipantIDs proquest_journals_2492126166
PublicationCentury 2000
PublicationDate 20211129
PublicationDateYYYYMMDD 2021-11-29
PublicationDate_xml – month: 11
  year: 2021
  text: 20211129
  day: 29
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7777007
SecondaryResourceType preprint
Snippet Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Integrity
Title Toward Taming the Overhead Monster for Data-Flow Integrity
URI https://www.proquest.com/docview/2492126166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA3aKnjyGz9qycFr7Cab3U28CGqLBVsXW6SeZDbJQkHbulurP98kbtWTF48hEMIkmXmZebxB6JTTRAVhpgkTOiCcJYxAkEgCCdWRyG2E9smch9uk3xejkUyrhFtZ0SqXPtE7aj1VLkfecsp21ML9OL6YvRLXNcpVV6sWGquo7lQSqKfuDb5zLCxOLGIOv4qZXrqrBcXHeHHm_jmOH1C1lvvtgn1c6Wz-d0dbqJ7CzBTbaMVMdtC653OqchedDz0dFg_hxcYmbFEevrOX1npejXsOEpoCW7iKr2EOpPM8fcddrxthMfkeGnTaw6sbUrVJIBCxmLDYxAAhDxQYw3NFVSQyGkKU0VwoLanIwYQhNczwTAZZLEQkMyEgEkZqHe6j2mQ6MQcIZxzsk5SKa-GUwSLgFq5oE_FE2fUEPUSNpSGeqptePv1Y4ejv6WO0wRwfhFLCZAPV5sWbOUFrajEfl0UT1S_b_fS-6Q_QjtJuL338BP2GpKA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ6gaPTkOz5Qe9BjZdvt7rYmxoNIJCKSQAwnSbctCYkCLoj6n_yRtgXUkzcOnps07Uw788306wzACSOJCsJUY8p1gBlNKJZBIrBMiI54x3pon8x5qCa1Gm-1RD0Hn7O_MI5WObOJ3lDrvnI58qKrbEcs3I_jy8ELdl2j3OvqrIXG5Fjcmo83G7INLyolq99TSsvXzasbPO0qgGVEY0xjE0sZskBJY1hHERXxlIQySkmHKy0I70gThsRQw1IRpDHnkUg5lxE3QuvQzroAeQsiqPBEwcZ3RofGicXn4eTp1BcKK8rsvTs-c1GVYyNMG9n9Nvjei5XX_tf-1yFflwOTbUDO9DZh2XNV1XALzpue6oua8tn6XWQRLLq3F9J6FY3uHNw1GbJQHJXkSOLyU_8NVXxNDBtvbENjDovdgcVev2d2AaVMWnMjFNPcVT2LJLNQTJuIJcrOx8keFGZib09v8bD9I_P9v4ePYeWmeVdtVyu12wNYpY73QgimogCLo-zVHMKSGo-6w-zIHxkEj_PV0Bcbbf5L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Taming+the+Overhead+Monster+for+Data-Flow+Integrity&rft.jtitle=arXiv.org&rft.au=Lang%2C+Feng&rft.au=Huang%2C+Jiayi&rft.au=Huang%2C+Jeff&rft.au=Hu%2C+Jiang&rft.date=2021-11-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2102.10031