Thresholding Bandits with Augmented UCB

In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to identify a set of arms whose quality is above a threshold. A key feature of AugUCB is that it uses both mean and variance estimates to eliminat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Mukherjee, Subhojyoti, Naveen, K P, Nandan Sudarsanam, Ravindran, Balaraman
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 07.06.2019
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to identify a set of arms whose quality is above a threshold. A key feature of AugUCB is that it uses both mean and variance estimates to eliminate arms that have been sufficiently explored; to the best of our knowledge this is the first algorithm to employ such an approach for the considered TBP. Theoretically, we obtain an upper bound on the loss (probability of mis-classification) incurred by AugUCB. Although UCBEV in literature provides a better guarantee, it is important to emphasize that UCBEV has access to problem complexity (whose computation requires arms' mean and variances), and hence is not realistic in practice; this is in contrast to AugUCB whose implementation does not require any such complexity inputs. We conduct extensive simulation experiments to validate the performance of AugUCB. Through our simulation work, we establish that AugUCB, owing to its utilization of variance estimates, performs significantly better than the state-of-the-art APT, CSAR and other non variance-based algorithms.
AbstractList In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to identify a set of arms whose quality is above a threshold. A key feature of AugUCB is that it uses both mean and variance estimates to eliminate arms that have been sufficiently explored; to the best of our knowledge this is the first algorithm to employ such an approach for the considered TBP. Theoretically, we obtain an upper bound on the loss (probability of mis-classification) incurred by AugUCB. Although UCBEV in literature provides a better guarantee, it is important to emphasize that UCBEV has access to problem complexity (whose computation requires arms' mean and variances), and hence is not realistic in practice; this is in contrast to AugUCB whose implementation does not require any such complexity inputs. We conduct extensive simulation experiments to validate the performance of AugUCB. Through our simulation work, we establish that AugUCB, owing to its utilization of variance estimates, performs significantly better than the state-of-the-art APT, CSAR and other non variance-based algorithms.
Author Ravindran, Balaraman
Mukherjee, Subhojyoti
Naveen, K P
Nandan Sudarsanam
Author_xml – sequence: 1
  givenname: Subhojyoti
  surname: Mukherjee
  fullname: Mukherjee, Subhojyoti
– sequence: 2
  givenname: K
  surname: Naveen
  middlename: P
  fullname: Naveen, K P
– sequence: 3
  fullname: Nandan Sudarsanam
– sequence: 4
  givenname: Balaraman
  surname: Ravindran
  fullname: Ravindran, Balaraman
BookMark eNotzb1OwzAUQGELgUQpfQC2SAxMCdf3-i9jG1FAqsQS5sqJ7SZVcSBOgMcHCaazfeeKncchesZuOBTCSAn3dvzuPwuuQRSAaPgZWyARz41AvGSrlI4AgEqjlLRgd3U3-tQNJ9fHQ7ax0fVTyr76qcvW8-HNx8m77LXaXLOLYE_Jr_67ZPX2oa6e8t3L43O13uVWosp5qcqgkLsgeBsoNGDbUkvwrTc8lDJobMgqh4pIelJB-Maj1cqQ5aUztGS3f-z7OHzMPk374zCP8fe4R9AaQJBS9AOwM0LU
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1704.02281
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a526-1969f621df41cf3fb0ac9750ece81f95f72b3a6d26335e36f4ebe2a7683a19d83
IEDL.DBID M7S
IngestDate Mon Jun 30 09:25:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-1969f621df41cf3fb0ac9750ece81f95f72b3a6d26335e36f4ebe2a7683a19d83
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2077004366?pq-origsite=%requestingapplication%
PQID 2077004366
PQPubID 2050157
ParticipantIDs proquest_journals_2077004366
PublicationCentury 2000
PublicationDate 20190607
PublicationDateYYYYMMDD 2019-06-07
PublicationDate_xml – month: 06
  year: 2019
  text: 20190607
  day: 07
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6905944
SecondaryResourceType preprint
Snippet In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Complexity
Computer simulation
Simulation
Upper bounds
Variance
Title Thresholding Bandits with Augmented UCB
URI https://www.proquest.com/docview/2077004366
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60VfDkGx-17EHwFO0m2zxOYkuLgpZFq9RTyeYhvbR1d1v8-SZxqwfBi8eQS4YZ5vHN5BuA80RZa2nivB9pKZS4AIW4wgopSjLNnUmJsA7o5Z4NBnw0EmkFuBXVWOXKJwZHrWfKY-QeCWGBL51ez9-R3xrlu6vVCo11qHuWBBxG956-MRZMmcuYyVczM1B3Xcn8Y7K8jJmnN8WYx79ccIgr_e3_vmgH6qmcm3wX1sx0DzbDPKcq9uFi6HRUVK2lqOP_rpRF5EHX6GbxFog4dfTc7RzAsN8bdm9RtRMByTamyJPZWIpjbZNYWWKzllTCBX2jDI-taFuGMyKpxpSQtiHUJk5JWLqagshYaE4OoTadTc0RRLGRlrUyyXiiXZXkKj1XW1AjtCUs44wfQ2Ml9riy62L8I_PJ39ensOVSCxGGqlgDamW-MGewoZblpMibUO_0BuljM6jLndK7h_T1E7Z6ni4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT8IwFH9B0OjJ7_iBuoPG05S1o-0OxghKICAhcRpuS9e1hgvgBqh_lP-jbWF6MPHmwXOTpXt9_b3P_h7AqS-UUsTX6IcrwvW1gXKZQMIVBMcJ0yoV2HFATx3a7bJ-P-gV4CN_C2PaKnNMtECdjITJkZtMCLV86eR6_OKaqVGmupqP0JirRVu-v-qQLbtq3erzPUOocRfWm-5iqoDLq4i4hg5GEeQlyveEwiqucBFosymFZJ4KqoqiGHOSIIJxVWKifP2biGuvHHMvSBjWn12Ckm_A33YKPnyldBCh2kHH89qpZQq75OnbYHbhUcOmihDzfiC-NWON9X8mgA0o9fhYpptQkMMtWLHdqiLbhvNQa2C2KJw5NfMyZ5I5JqXs3EyfLc1o4jzWazsQ_sXWdqE4HA3lHjie5IpWYk6Zn-gYUMexOnIiMkgUpjGjbB_KuZSjxa3Nom8RH_y-fAKrzfC-E3Va3fYhrGknKrDtY7QMxUk6lUewLGaTQZYeWw1xIPrjA_kEdjr23Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thresholding+Bandits+with+Augmented+UCB&rft.jtitle=arXiv.org&rft.au=Mukherjee%2C+Subhojyoti&rft.au=Naveen%2C+K+P&rft.au=Nandan+Sudarsanam&rft.au=Ravindran%2C+Balaraman&rft.date=2019-06-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1704.02281