Thresholding Bandits with Augmented UCB
In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to identify a set of arms whose quality is above a threshold. A key feature of AugUCB is that it uses both mean and variance estimates to eliminat...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
07.06.2019
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to identify a set of arms whose quality is above a threshold. A key feature of AugUCB is that it uses both mean and variance estimates to eliminate arms that have been sufficiently explored; to the best of our knowledge this is the first algorithm to employ such an approach for the considered TBP. Theoretically, we obtain an upper bound on the loss (probability of mis-classification) incurred by AugUCB. Although UCBEV in literature provides a better guarantee, it is important to emphasize that UCBEV has access to problem complexity (whose computation requires arms' mean and variances), and hence is not realistic in practice; this is in contrast to AugUCB whose implementation does not require any such complexity inputs. We conduct extensive simulation experiments to validate the performance of AugUCB. Through our simulation work, we establish that AugUCB, owing to its utilization of variance estimates, performs significantly better than the state-of-the-art APT, CSAR and other non variance-based algorithms. |
|---|---|
| AbstractList | In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to identify a set of arms whose quality is above a threshold. A key feature of AugUCB is that it uses both mean and variance estimates to eliminate arms that have been sufficiently explored; to the best of our knowledge this is the first algorithm to employ such an approach for the considered TBP. Theoretically, we obtain an upper bound on the loss (probability of mis-classification) incurred by AugUCB. Although UCBEV in literature provides a better guarantee, it is important to emphasize that UCBEV has access to problem complexity (whose computation requires arms' mean and variances), and hence is not realistic in practice; this is in contrast to AugUCB whose implementation does not require any such complexity inputs. We conduct extensive simulation experiments to validate the performance of AugUCB. Through our simulation work, we establish that AugUCB, owing to its utilization of variance estimates, performs significantly better than the state-of-the-art APT, CSAR and other non variance-based algorithms. |
| Author | Ravindran, Balaraman Mukherjee, Subhojyoti Naveen, K P Nandan Sudarsanam |
| Author_xml | – sequence: 1 givenname: Subhojyoti surname: Mukherjee fullname: Mukherjee, Subhojyoti – sequence: 2 givenname: K surname: Naveen middlename: P fullname: Naveen, K P – sequence: 3 fullname: Nandan Sudarsanam – sequence: 4 givenname: Balaraman surname: Ravindran fullname: Ravindran, Balaraman |
| BookMark | eNotzb1OwzAUQGELgUQpfQC2SAxMCdf3-i9jG1FAqsQS5sqJ7SZVcSBOgMcHCaazfeeKncchesZuOBTCSAn3dvzuPwuuQRSAaPgZWyARz41AvGSrlI4AgEqjlLRgd3U3-tQNJ9fHQ7ax0fVTyr76qcvW8-HNx8m77LXaXLOLYE_Jr_67ZPX2oa6e8t3L43O13uVWosp5qcqgkLsgeBsoNGDbUkvwrTc8lDJobMgqh4pIelJB-Maj1cqQ5aUztGS3f-z7OHzMPk374zCP8fe4R9AaQJBS9AOwM0LU |
| ContentType | Paper |
| Copyright | 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1704.02281 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a526-1969f621df41cf3fb0ac9750ece81f95f72b3a6d26335e36f4ebe2a7683a19d83 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:25:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a526-1969f621df41cf3fb0ac9750ece81f95f72b3a6d26335e36f4ebe2a7683a19d83 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2077004366?pq-origsite=%requestingapplication% |
| PQID | 2077004366 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2077004366 |
| PublicationCentury | 2000 |
| PublicationDate | 20190607 |
| PublicationDateYYYYMMDD | 2019-06-07 |
| PublicationDate_xml | – month: 06 year: 2019 text: 20190607 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2019 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.6905944 |
| SecondaryResourceType | preprint |
| Snippet | In this paper we propose the Augmented-UCB (AugUCB) algorithm for a fixed-budget version of the thresholding bandit problem (TBP), where the objective is to... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Complexity Computer simulation Simulation Upper bounds Variance |
| Title | Thresholding Bandits with Augmented UCB |
| URI | https://www.proquest.com/docview/2077004366 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9a9iB4im6S3TxOYkuLHiyLVqinkqf00tbdtvjzTeJWD4IXjyGXDBNmJt9Mvg-AS1-jIm0Eg8hfFpgp46DgkkNJrE5NlnOtVRSbYIMBH41EUQNuVT1WuY6JMVCbmQ4YeUBCWORLp7fzdxhUo0J3tZbQ2ATNwJKA4-je8zfGginzFTP5amZG6q4bWX5MVteIBXpTjDn6FYJjXunv_vdEe6BZyLkt98GGnR6A7TjPqatDcDX0Pqrq1lLSCX9XFlUSQNfkbvkWiThN8tLtHIFhvzfs3sNaEwHKHFMYyGwcxci4DGlHnEqlFj7pW205ciJ3DCsiqcGUkNwS6jLvJCz9m4JIJAwnx6AxnU3tCUis95ESeZoaSzMuc2UzTUiKhcpSrrg8Ba212eP6XlfjH5vP_t4-Bzu-tBBxqIq1QGNRLu0F2NKrxaQq26DZ6Q2Kp3Z0l18VD4_F6yf6tZ8Y |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5Q96DxtLrb7qM9GCMogYCExDXhtum2XcMFcBdQf5T_0bawejDxxsFzk6adfp1O5_ENwLmyUV0uaGi7Ciy2l4jUpoQRm2HJHeH5hPPENJsIu13S79NeCT6LWhidVlnoRKOoxYhrH7n2hISGLz24Hb_aumuUjq4WLTTmsGjLjzf1ZctvWvfqfC8QajxE9aa96CpgMx8FtqaDSQPkitRzeYrTxGGcqmdTcknclPppiBLMAoECjH2Jg9RT20RMWeWYuVQQrKZdgYqnlb_JFHz6dumgIFQGOp7HTg1T2DXL3gezKzfUbKoIEfeXxjfPWGPznwlgCyo9NpbZNpTkcAfWTLYqz3fhMlIIzBeBM6umK3MmuaVdytbd9MXQjArruV7bg2gZS9uH8nA0lAdgSYXAhPqOI2TgEeYn0uMYO4gmnkMSwg6hWkg5XtzaPP4R8dHfw2ew3oweO3Gn1W0fw4YyoqhJHwurUJ5kU3kCq3w2GeTZqUGIBfGSD-QLhYL3xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thresholding+Bandits+with+Augmented+UCB&rft.jtitle=arXiv.org&rft.au=Mukherjee%2C+Subhojyoti&rft.au=Naveen%2C+K+P&rft.au=Nandan+Sudarsanam&rft.au=Ravindran%2C+Balaraman&rft.date=2019-06-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1704.02281 |