Asymptotics for the number of directions determined by \([n] \times [n]\) in \(\mathbb{F}_p^2\)
Let \(p\) be a prime and \(n\) a positive integer such that \(\sqrt{\frac p2} + 1 \leq n \leq \sqrt{p}\). For any arithmetic progression \(A\) of length \(n\) in \(\mathbb{F}_p\), we establish an asymptotic formula for the number of directions determined by \(A \times A \subset \mathbb{F}_p^2\). The...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
03.07.2021
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let \(p\) be a prime and \(n\) a positive integer such that \(\sqrt{\frac p2} + 1 \leq n \leq \sqrt{p}\). For any arithmetic progression \(A\) of length \(n\) in \(\mathbb{F}_p\), we establish an asymptotic formula for the number of directions determined by \(A \times A \subset \mathbb{F}_p^2\). The key idea is to reduce the problem to counting the number of solutions to the bilinear Diophantine equation \(ad+bc=p\) in variables \(1\le a,b,c,d\le n\); our asymptotic formula for the number of solutions is of independent interest. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2107.01311 |