Asymptotics for the number of directions determined by \([n] \times [n]\) in \(\mathbb{F}_p^2\)

Let \(p\) be a prime and \(n\) a positive integer such that \(\sqrt{\frac p2} + 1 \leq n \leq \sqrt{p}\). For any arithmetic progression \(A\) of length \(n\) in \(\mathbb{F}_p\), we establish an asymptotic formula for the number of directions determined by \(A \times A \subset \mathbb{F}_p^2\). The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Martin, Greg, White, Ethan Patrick, Yip, Chi Hoi
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 03.07.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let \(p\) be a prime and \(n\) a positive integer such that \(\sqrt{\frac p2} + 1 \leq n \leq \sqrt{p}\). For any arithmetic progression \(A\) of length \(n\) in \(\mathbb{F}_p\), we establish an asymptotic formula for the number of directions determined by \(A \times A \subset \mathbb{F}_p^2\). The key idea is to reduce the problem to counting the number of solutions to the bilinear Diophantine equation \(ad+bc=p\) in variables \(1\le a,b,c,d\le n\); our asymptotic formula for the number of solutions is of independent interest.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2107.01311