Maximising the total weight of on-time jobs on parallel machines subject to a conflict graph

The paper considers scheduling on parallel machines under the constraint that some pairs of jobs cannot be processed concurrently. Each job has an associated weight, and all jobs have the same deadline. The objective is to maximise the total weight of on-time jobs. The problem is known to be strongl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Zinder, Yakov, Berlińska, Joanna, Peter, Charlie
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 04.03.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper considers scheduling on parallel machines under the constraint that some pairs of jobs cannot be processed concurrently. Each job has an associated weight, and all jobs have the same deadline. The objective is to maximise the total weight of on-time jobs. The problem is known to be strongly NP-hard in general. A polynomial-time algorithm for scheduling unit execution time jobs on two machines is proposed. The performance of a broad family of approximation algorithms for scheduling unit execution time jobs on more than two machines is analysed. For the case of arbitrary job processing times, two integer linear programming formulations are proposed and compared with two formulations known from the earlier literature. An iterated variable neighborhood search algorithm is also proposed and evaluated by means of computational experiments.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2103.03346