Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction

Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner. One major challenge of physiological sensing lies in the variability of biosignals across different users and tasks. To address this issue, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Han, Mo, Ozdenizci, Ozan, Wang, Ye, Koike-Akino, Toshiaki, Erdogmus, Deniz
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 26.08.2020
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner. One major challenge of physiological sensing lies in the variability of biosignals across different users and tasks. To address this issue, we propose an adversarial feature extractor for transfer learning to exploit disentangled universal representations. We consider the trade-off between task-relevant features and user-discriminative information by introducing additional adversary and nuisance networks in order to manipulate the latent representations such that the learned feature extractor is applicable to unknown users and various tasks. Results on cross-subject transfer evaluations exhibit the benefits of the proposed framework, with up to 8.8% improvement in average accuracy of classification, and demonstrate adaptability to a broader range of subjects.
AbstractList Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner. One major challenge of physiological sensing lies in the variability of biosignals across different users and tasks. To address this issue, we propose an adversarial feature extractor for transfer learning to exploit disentangled universal representations. We consider the trade-off between task-relevant features and user-discriminative information by introducing additional adversary and nuisance networks in order to manipulate the latent representations such that the learned feature extractor is applicable to unknown users and various tasks. Results on cross-subject transfer evaluations exhibit the benefits of the proposed framework, with up to 8.8% improvement in average accuracy of classification, and demonstrate adaptability to a broader range of subjects.
Author Erdogmus, Deniz
Han, Mo
Ozdenizci, Ozan
Wang, Ye
Koike-Akino, Toshiaki
Author_xml – sequence: 1
  givenname: Mo
  surname: Han
  fullname: Han, Mo
– sequence: 2
  givenname: Ozan
  surname: Ozdenizci
  fullname: Ozdenizci, Ozan
– sequence: 3
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
– sequence: 4
  givenname: Toshiaki
  surname: Koike-Akino
  fullname: Koike-Akino, Toshiaki
– sequence: 5
  givenname: Deniz
  surname: Erdogmus
  fullname: Erdogmus, Deniz
BookMark eNotjU9LwzAcQIMoOOc-gLeC5878T3Mcc9PBQMHdPIxf019nR0k0Scv89k709C6P927IpQ8eCbljdC4rpegDxFM3zjml1ZwxyfUFmXAhWFlJzq_JLKUjpZRrw5USE_L-2CX0Gfyhx6ZYNCPGBLGDvlgMOaB3ocFYtCEWb0N9RJfLjR9_BZ-L14_v1IU-HDp39tcIeYhYrE45gstd8LfkqoU-4eyfU7Jbr3bL53L78rRZLrYlKK5KsEiVqK1qjQRwtpFYMe1aV2vBGZhGqBoaba11SFltuG2NYVbVCjR3Uoopuf_LfsbwNWDK-2MYoj8f91wKo4URXIkf8MhXdw
ContentType Paper
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2008.11426
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a525-a9e053b95f74aac9d4e816cfcb6321a7d35bad6999ce01b729f77195b5a62c443
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:21:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-a9e053b95f74aac9d4e816cfcb6321a7d35bad6999ce01b729f77195b5a62c443
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2437637325?pq-origsite=%requestingapplication%
PQID 2437637325
PQPubID 2050157
ParticipantIDs proquest_journals_2437637325
PublicationCentury 2000
PublicationDate 20200826
PublicationDateYYYYMMDD 2020-08-26
PublicationDate_xml – month: 08
  year: 2020
  text: 20200826
  day: 26
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7325526
SecondaryResourceType preprint
Snippet Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Feature extraction
Physiology
Representations
Title Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction
URI https://www.proquest.com/docview/2437637325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgBYmJb_FRKg-sVps4seMJ8dGKDlQRdChiqGzHRpVQWpK06s_H56YwILEwRokiy4mf78733kPo2nal5A57idCJJREPFREu6yC8qwVXXINCizeb4MNhMh6LtC64lXVb5QYTPVBnMw018g4I5zHKaRjfzD8JuEbB6WptobGNmqBUFjVQ8643TJ-_qywh4y5mpuvjTC_e1ZHFarpcN1ECj5T9AmG_s_T3_zumA9RM5dwUh2jL5Edo13d06vIYvT1MPa8of_8wGfa-y6WEvw3fLqoZyFdmpsAuZMUOO6AYQwb5Eh7IK-xfskFFDFHiojC4t6qKNQ3iBI36vdH9I6mdFIiMw5hIAQYQSsSWR1JqkUUmCZi2WjEaBpJnNFYyYy5W1KYbKBdvW84DEatYslBHET1FjXyWmzOEbSIzSykTVAGpVijrMjKRBFpmwGyz56i1mapJvRrKyc88Xfx9-xLthZDPdt3qZS3UqIqFuUI7ellNy6Jdf9w29Ge-uKt08JS-fgET4rP9
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED2VAoKJb_GNBxgtGjux4wEhBEWtgKpDhyKGynZsVAmlkKQFfhT_ETttYEBiY2BOZMm588vd-d49gGPbkJI77MVCxxaHnCgsXNaBeUMLrrj2E1pKsQne6cT9vujW4KPiwvi2ygoTS6BORtrXyE_94DxGOSXR-fML9qpR_na1ktCYusWNeX91KVt-1r5y9j0h5LrZu2zhmaoAlhGJsBReDEGJyPJQSi2S0MQB01YrRkkgeUIjJRPm4iZtGoFysaflPBCRiiQjOgypW3YO5kPn63Ed5rvtu-79V1GHMO5CdDq9PS1nhZ3K7G04mfZsetoq-4H55Y_seuWffYJVt3X5bLI1qJl0HRbLflWdb8DD1bBkTaWPTyZBpap0Lv1ZQhfjYuSHcyYmQy4gRw4ZfakJt9OJfyEtULlIhfnIx8DjzKDmW5FNSR6b0PuL7WxBPR2lZhuQjWViKWWCKk8ZFsq6fFPEgZaJ5-3ZHdivLDOYnfV88G2W3d8fH8FSq3d3O7htd272YJn4zL3hcIrtQ73IxuYAFvSkGObZ4cyvEAz-2IyfMPMNhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangled+Adversarial+Autoencoder+for+Subject-Invariant+Physiological+Feature+Extraction&rft.jtitle=arXiv.org&rft.au=Han%2C+Mo&rft.au=Ozdenizci%2C+Ozan&rft.au=Wang%2C+Ye&rft.au=Koike-Akino%2C+Toshiaki&rft.date=2020-08-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2008.11426