Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction
Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner. One major challenge of physiological sensing lies in the variability of biosignals across different users and tasks. To address this issue, we...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
26.08.2020
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner. One major challenge of physiological sensing lies in the variability of biosignals across different users and tasks. To address this issue, we propose an adversarial feature extractor for transfer learning to exploit disentangled universal representations. We consider the trade-off between task-relevant features and user-discriminative information by introducing additional adversary and nuisance networks in order to manipulate the latent representations such that the learned feature extractor is applicable to unknown users and various tasks. Results on cross-subject transfer evaluations exhibit the benefits of the proposed framework, with up to 8.8% improvement in average accuracy of classification, and demonstrate adaptability to a broader range of subjects. |
|---|---|
| AbstractList | Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner. One major challenge of physiological sensing lies in the variability of biosignals across different users and tasks. To address this issue, we propose an adversarial feature extractor for transfer learning to exploit disentangled universal representations. We consider the trade-off between task-relevant features and user-discriminative information by introducing additional adversary and nuisance networks in order to manipulate the latent representations such that the learned feature extractor is applicable to unknown users and various tasks. Results on cross-subject transfer evaluations exhibit the benefits of the proposed framework, with up to 8.8% improvement in average accuracy of classification, and demonstrate adaptability to a broader range of subjects. |
| Author | Erdogmus, Deniz Han, Mo Ozdenizci, Ozan Wang, Ye Koike-Akino, Toshiaki |
| Author_xml | – sequence: 1 givenname: Mo surname: Han fullname: Han, Mo – sequence: 2 givenname: Ozan surname: Ozdenizci fullname: Ozdenizci, Ozan – sequence: 3 givenname: Ye surname: Wang fullname: Wang, Ye – sequence: 4 givenname: Toshiaki surname: Koike-Akino fullname: Koike-Akino, Toshiaki – sequence: 5 givenname: Deniz surname: Erdogmus fullname: Erdogmus, Deniz |
| BookMark | eNotjU9LwzAcQIMoOOc-gLeC5878T3Mcc9PBQMHdPIxf019nR0k0Scv89k709C6P927IpQ8eCbljdC4rpegDxFM3zjml1ZwxyfUFmXAhWFlJzq_JLKUjpZRrw5USE_L-2CX0Gfyhx6ZYNCPGBLGDvlgMOaB3ocFYtCEWb0N9RJfLjR9_BZ-L14_v1IU-HDp39tcIeYhYrE45gstd8LfkqoU-4eyfU7Jbr3bL53L78rRZLrYlKK5KsEiVqK1qjQRwtpFYMe1aV2vBGZhGqBoaba11SFltuG2NYVbVCjR3Uoopuf_LfsbwNWDK-2MYoj8f91wKo4URXIkf8MhXdw |
| ContentType | Paper |
| Copyright | 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2008.11426 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a525-a9e053b95f74aac9d4e816cfcb6321a7d35bad6999ce01b729f77195b5a62c443 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:21:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a525-a9e053b95f74aac9d4e816cfcb6321a7d35bad6999ce01b729f77195b5a62c443 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2437637325?pq-origsite=%requestingapplication% |
| PQID | 2437637325 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2437637325 |
| PublicationCentury | 2000 |
| PublicationDate | 20200826 |
| PublicationDateYYYYMMDD | 2020-08-26 |
| PublicationDate_xml | – month: 08 year: 2020 text: 20200826 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2020 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7325526 |
| SecondaryResourceType | preprint |
| Snippet | Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner.... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Feature extraction Physiology Representations |
| Title | Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction |
| URI | https://www.proquest.com/docview/2437637325 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgBYmJb_FRKg-sVps4seMJ8dGKDlQRdChiqGzHRpVQWpK06s_H56YwILEwRokiy4mf78733kPo2nal5A57idCJJREPFREu6yC8qwVXXINCizeb4MNhMh6LtC64lXVb5QYTPVBnMw018g4I5zHKaRjfzD8JuEbB6WptobGNmqBUFjVQ8643TJ-_qywh4y5mpuvjTC_e1ZHFarpcN1ECj5T9AmG_s_T3_zumA9RM5dwUh2jL5Edo13d06vIYvT1MPa8of_8wGfa-y6WEvw3fLqoZyFdmpsAuZMUOO6AYQwb5Eh7IK-xfskFFDFHiojC4t6qKNQ3iBI36vdH9I6mdFIiMw5hIAQYQSsSWR1JqkUUmCZi2WjEaBpJnNFYyYy5W1KYbKBdvW84DEatYslBHET1FjXyWmzOEbSIzSykTVAGpVijrMjKRBFpmwGyz56i1mapJvRrKyc88Xfx9-xLthZDPdt3qZS3UqIqFuUI7ellNy6Jdf9w29Ge-uKt08JS-fgET4rP9 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED2VAoKJb_GNBxgtGjux4wEhBEWtgKpDhyKGynZsVAmlkKQFfhT_ETttYEBiY2BOZMm588vd-d49gGPbkJI77MVCxxaHnCgsXNaBeUMLrrj2E1pKsQne6cT9vujW4KPiwvi2ygoTS6BORtrXyE_94DxGOSXR-fML9qpR_na1ktCYusWNeX91KVt-1r5y9j0h5LrZu2zhmaoAlhGJsBReDEGJyPJQSi2S0MQB01YrRkkgeUIjJRPm4iZtGoFysaflPBCRiiQjOgypW3YO5kPn63Ed5rvtu-79V1GHMO5CdDq9PS1nhZ3K7G04mfZsetoq-4H55Y_seuWffYJVt3X5bLI1qJl0HRbLflWdb8DD1bBkTaWPTyZBpap0Lv1ZQhfjYuSHcyYmQy4gRw4ZfakJt9OJfyEtULlIhfnIx8DjzKDmW5FNSR6b0PuL7WxBPR2lZhuQjWViKWWCKk8ZFsq6fFPEgZaJ5-3ZHdivLDOYnfV88G2W3d8fH8FSq3d3O7htd272YJn4zL3hcIrtQ73IxuYAFvSkGObZ4cyvEAz-2IyfMPMNhg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangled+Adversarial+Autoencoder+for+Subject-Invariant+Physiological+Feature+Extraction&rft.jtitle=arXiv.org&rft.au=Han%2C+Mo&rft.au=Ozdenizci%2C+Ozan&rft.au=Wang%2C+Ye&rft.au=Koike-Akino%2C+Toshiaki&rft.date=2020-08-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2008.11426 |