Noise Learning Based Denoising Autoencoder

This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Lee, Woong-Hee, Ozger, Mustafa, Challita, Ursula, Sung, Ki Won
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.06.2021
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE is more effective than DAE when the noise is simpler to regenerate than the original data. To validate the performance of nlDAE, we provide three case studies: signal restoration, symbol demodulation, and precise localization. Numerical results suggest that nlDAE requires smaller latent space dimension and smaller training dataset compared to DAE.
AbstractList This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE is more effective than DAE when the noise is simpler to regenerate than the original data. To validate the performance of nlDAE, we provide three case studies: signal restoration, symbol demodulation, and precise localization. Numerical results suggest that nlDAE requires smaller latent space dimension and smaller training dataset compared to DAE.
Author Sung, Ki Won
Lee, Woong-Hee
Challita, Ursula
Ozger, Mustafa
Author_xml – sequence: 1
  givenname: Woong-Hee
  surname: Lee
  fullname: Lee, Woong-Hee
– sequence: 2
  givenname: Mustafa
  surname: Ozger
  fullname: Ozger, Mustafa
– sequence: 3
  givenname: Ursula
  surname: Challita
  fullname: Challita, Ursula
– sequence: 4
  givenname: Ki
  surname: Sung
  middlename: Won
  fullname: Sung, Ki Won
BookMark eNotjk1LxDAURYMoOI7zA9wV3AmtyUtekyzHcfyAopvZD0nzKh0k0WQq_nwrurrcuzj3XLDTmCIxdiV4owwiv3X5e_xqQHDRcG2lPmELkFLURgGcs1UpB845tBoQ5YLdvKSxUNWRy3GMb9WdKxSqe4rz_NvX0zFR7FOgfMnOBvdeaPWfS7Z72O42T3X3-vi8WXe1Q8AabXCELXLd-l6ZnmQvLaICLYJCPWspAh9MGKxTJIL1dhC9McIKP7Q-yCW7_sN-5PQ5UTnuD2nKcX7cg9IWNfLZ_AeUpkP_
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2101.07937
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (NC Live)
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a525-59dae565076bc48ce3c39554271d4571014e2bd8df9a4e1d9b9f1c88191bf6bd3
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:11:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-59dae565076bc48ce3c39554271d4571014e2bd8df9a4e1d9b9f1c88191bf6bd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2479575055?pq-origsite=%requestingapplication%
PQID 2479575055
PQPubID 2050157
ParticipantIDs proquest_journals_2479575055
PublicationCentury 2000
PublicationDate 20210621
PublicationDateYYYYMMDD 2021-06-21
PublicationDate_xml – month: 06
  year: 2021
  text: 20210621
  day: 21
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7616154
SecondaryResourceType preprint
Snippet This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Demodulation
Learning
Noise reduction
Title Noise Learning Based Denoising Autoencoder
URI https://www.proquest.com/docview/2479575055
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwGPwELUhMvMWjVBmYkNImThzbE6LQCgaiCDqUqfITdUlK0lb8fOw0hQGJiTHJ4tjW5zv7fAdwHWtMEUPU18TS1TgJQ19gLHxpWRyXlBCO1mETJE3pZMKy5np01cgqNzWxLtRrt2en27ZFuK8K6XbM-ygmzAKNAOPb-YfvMqTcWWsTqLENbWe8FbSgnT09Z2_fey4oIRZBR-vDzdrKq8_Lz9mqZ3lP2Kut4n6V5HqdGe3_bwsPbMv4XJeHsKXzI9it1Z6yOoabtJhV2mu8Vd-9gV3KlPegc_vaPd8tF4UzuFS6PIHxaDi-f_Sb0ASfY4R9zBTXFqQFJBEyplJHMmIWMiASqhgTl8yrkVBUGcZjHSommAkldbRNmESo6BRaeZHrM_CoJTcWIfAIGWciR4QKqMHYYIOQCVR8Dp1NP0ybiV9Nf3774u_Pl7CHnDzEzhAUdqC1KJf6CnbkajGryi60B8M0e-k6KeZrtxnHLzPfq0Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED2VFgQT3-KjQAZYkFISJ66dASGgVK3aRh06lKlKbAd1SUrSFvhR_EfOaQMDElsHxiRS5JzPd_fsy3sAl66inHiEm4ohXHXrtm2GlIamQBQXCM5YQBZiE8z3-XDo9UvwWfwLo9sqi5iYB2qZCL1HfkNc5mFpYVF6N3k1tWqUPl0tJDQWbtFRH28I2bLbdgPn94qQ5tPgsWUuVQXMgBJqUk8GCqsYxO-hcLlQjnA8zKmE2dKlTEvXKhJKLiMvcJUtvdCLbME1rgmjeigdfO0aVFz0dasMlX6713_-3tQhdYYlurM4Pc25wm6C9H08ryGwsms5F92vmJ8nsub2PzPBDn56MFHpLpRUvAcbeb-qyPbh2k_GmTKW7LAvxgMmY2k0VIy39fX9bJpoik6p0gMYrGJ0h1COk1gdgcERnmGNEzgk0jR4LJQWjyiNaERIZEn3GKqFoUfLpZuNfqx88vfjC9hsDXrdUbftd05hi-hmF_R3YlehPE1n6gzWxXw6ztLzpZsYMFrxrHwB1x_4rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Learning+Based+Denoising+Autoencoder&rft.jtitle=arXiv.org&rft.au=Lee%2C+Woong-Hee&rft.au=Ozger%2C+Mustafa&rft.au=Challita%2C+Ursula&rft.au=Sung%2C+Ki+Won&rft.date=2021-06-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2101.07937