Quantum Sampling Algorithms, Phase Transitions, and Computational Complexity

Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics. The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Wild, Dominik S, Sels, Dries, Pichler, Hannes, Zanoci, Cristian, Lukin, Mikhail D
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 07.09.2021
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics. The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement. We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various classical models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem. By constructing a parent Hamiltonian, whose ground state is the desired quantum state, we relate the asymptotic scaling of the state preparation time to the nature of transitions between distinct quantum phases. These insights enable us to identify adiabatic paths that achieve a quantum speedup over classical Markov chain algorithms. In addition, we show that parent Hamiltonians for the problem of sampling from independent sets on certain graphs can be naturally realized with neutral atoms interacting via highly excited Rydberg states.
AbstractList Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics. The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement. We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various classical models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem. By constructing a parent Hamiltonian, whose ground state is the desired quantum state, we relate the asymptotic scaling of the state preparation time to the nature of transitions between distinct quantum phases. These insights enable us to identify adiabatic paths that achieve a quantum speedup over classical Markov chain algorithms. In addition, we show that parent Hamiltonians for the problem of sampling from independent sets on certain graphs can be naturally realized with neutral atoms interacting via highly excited Rydberg states.
Author Lukin, Mikhail D
Wild, Dominik S
Sels, Dries
Pichler, Hannes
Zanoci, Cristian
Author_xml – sequence: 1
  givenname: Dominik
  surname: Wild
  middlename: S
  fullname: Wild, Dominik S
– sequence: 2
  givenname: Dries
  surname: Sels
  fullname: Sels, Dries
– sequence: 3
  givenname: Hannes
  surname: Pichler
  fullname: Pichler, Hannes
– sequence: 4
  givenname: Cristian
  surname: Zanoci
  fullname: Zanoci, Cristian
– sequence: 5
  givenname: Mikhail
  surname: Lukin
  middlename: D
  fullname: Lukin, Mikhail D
BookMark eNotjs1Og0AURidGE2vtA7gjcSt4uTPDDMuGaDUhUSP75sIMLQ0MyICpb2_9WZ18Z_HlXLFz1zvL2E0MkdBSwj2Nx-YzwhjSCDiAOmML5DwOtUC8ZCvvDwCAiUIp-YLlbzO5ae6Cd-qGtnG7YN3u-rGZ9p2_C1735G1QjOR8MzW9OylyJsj6bpgn-jHU_q7WHpvp65pd1NR6u_rnkhWPD0X2FOYvm-dsnYckUYaYpAhowBotlKqlTOuk5EYlhImGSsRGa6MVlXFpgQhLURnLYyGpUjUIwZfs9u92GPuP2fppe-jn8ZTitygVoEbJJf8God9RGQ
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2109.03007
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a525-269202d0ed8477f559f6b3d76a2680c41d88d87ab1be0aa2b4cde3145ac7f0443
IEDL.DBID M7S
IngestDate Mon Jun 30 09:10:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-269202d0ed8477f559f6b3d76a2680c41d88d87ab1be0aa2b4cde3145ac7f0443
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2570282535?pq-origsite=%requestingapplication%
PQID 2570282535
PQPubID 2050157
ParticipantIDs proquest_journals_2570282535
PublicationCentury 2000
PublicationDate 20210907
PublicationDateYYYYMMDD 2021-09-07
PublicationDate_xml – month: 09
  year: 2021
  text: 20210907
  day: 07
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7694352
SecondaryResourceType preprint
Snippet Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Adiabatic flow
Algorithms
Complexity
Graphs
Hamiltonian functions
Ising model
Machine learning
Markov chains
Neutral atoms
Phase transitions
Probability distribution
Quantum computers
Rydberg states
Sampling
Statistical analysis
Statistical methods
Title Quantum Sampling Algorithms, Phase Transitions, and Computational Complexity
URI https://www.proquest.com/docview/2570282535
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UNPHkd_xA0oNHJl3XreVk1EA0UTKFA55IvwYkMnAbRP972zL0YOLFY7NuaV6X9_re-_X3A-DSnFgjrQj3KGbSIxZbY_IQ5JHQ14lMjLMUwolN0G6XDQatuCy45SWscu0TnaNWM2lr5E2rtmbvWQbh9fzds6pRtrtaSmhsgqplSfAddK_3XWPBETUn5mDVzHTUXU2efUyWVybPsdymCNFfLtjFlc7uf1e0B6oxn-tsH2zo9ABsOzynzA_B4_PCmGwxhT1uIePpCN68jczLxXiaN2A8NrELujC1Qmw1IE8VXCk8lNVBN7JsmcXnEeh32v27e68UTvB4iC1orYURVkgrE3poYnKGJBKBohHHEUOS-IoxxSgXvtCIcyyIVDrwScglTRAhwTGopLNUnwDINFOR5ajRCTGzcCuiWgrzBe5zkWj_FNTWthmWP38-_DHM2d-Pz8EOthAR25-hNVApsoW-AFtyWUzyrA6qt-1u_FJ3e2pG8cNT_PoFCButOA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Qe9AblXa7dMvBGOMjEJBg4MCNbHe3QCIFKaD8KP-jswvowcQbB49Nm82mMzvPb-cDuMSI1VeScpuRQNhUY2swD3FsWnBVJCI0lmFoyCZYrRa0WsV6Cj6Xd2E0rHJpE42hlgOha-R5zbam71l6hdvhm61Zo3R3dUmhMVeLipq9Y8qW3JQfUL5XhDw9Nu9L9oJVwOYFohFdRcz3paMk2mUWYUAd-aEnmc-JHziCujIIZMB46IbK4ZyEVEjlubTABYscSj1cdg0yGEWQokEKNr5LOsRnGKB7896pmRSW56OP3vQa0yo9StVx2C-Lb9zY0_Y_-wE7kKnzoRrtQkrFe7Bh0Koi2YfqywQVYtK3GlwD4uOOdffawb2Ou_0kZ9W76Jkt44TneLScxWNpzfkrFrVP86RngY5nB9Bcxf4PIR0PYnUEVqAC6esJPCqi-BUp-kyJEFfgLg8j5R5DdimK9uJoJ-0fOZz8_foCNkvN52q7Wq5VTmGLaDCM7kSxLKTHo4k6g3UxHfeS0blRIwvaK5baF_V2BSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Sampling+Algorithms%2C+Phase+Transitions%2C+and+Computational+Complexity&rft.jtitle=arXiv.org&rft.au=Wild%2C+Dominik+S&rft.au=Sels%2C+Dries&rft.au=Pichler%2C+Hannes&rft.au=Zanoci%2C+Cristian&rft.date=2021-09-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2109.03007