Quantum Sampling Algorithms, Phase Transitions, and Computational Complexity
Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics. The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
07.09.2021
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics. The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement. We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various classical models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem. By constructing a parent Hamiltonian, whose ground state is the desired quantum state, we relate the asymptotic scaling of the state preparation time to the nature of transitions between distinct quantum phases. These insights enable us to identify adiabatic paths that achieve a quantum speedup over classical Markov chain algorithms. In addition, we show that parent Hamiltonians for the problem of sampling from independent sets on certain graphs can be naturally realized with neutral atoms interacting via highly excited Rydberg states. |
|---|---|
| AbstractList | Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics. The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement. We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various classical models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem. By constructing a parent Hamiltonian, whose ground state is the desired quantum state, we relate the asymptotic scaling of the state preparation time to the nature of transitions between distinct quantum phases. These insights enable us to identify adiabatic paths that achieve a quantum speedup over classical Markov chain algorithms. In addition, we show that parent Hamiltonians for the problem of sampling from independent sets on certain graphs can be naturally realized with neutral atoms interacting via highly excited Rydberg states. |
| Author | Lukin, Mikhail D Wild, Dominik S Sels, Dries Pichler, Hannes Zanoci, Cristian |
| Author_xml | – sequence: 1 givenname: Dominik surname: Wild middlename: S fullname: Wild, Dominik S – sequence: 2 givenname: Dries surname: Sels fullname: Sels, Dries – sequence: 3 givenname: Hannes surname: Pichler fullname: Pichler, Hannes – sequence: 4 givenname: Cristian surname: Zanoci fullname: Zanoci, Cristian – sequence: 5 givenname: Mikhail surname: Lukin middlename: D fullname: Lukin, Mikhail D |
| BookMark | eNotjs1Og0AURidGE2vtA7gjcSt4uTPDDMuGaDUhUSP75sIMLQ0MyICpb2_9WZ18Z_HlXLFz1zvL2E0MkdBSwj2Nx-YzwhjSCDiAOmML5DwOtUC8ZCvvDwCAiUIp-YLlbzO5ae6Cd-qGtnG7YN3u-rGZ9p2_C1735G1QjOR8MzW9OylyJsj6bpgn-jHU_q7WHpvp65pd1NR6u_rnkhWPD0X2FOYvm-dsnYckUYaYpAhowBotlKqlTOuk5EYlhImGSsRGa6MVlXFpgQhLURnLYyGpUjUIwZfs9u92GPuP2fppe-jn8ZTitygVoEbJJf8God9RGQ |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2109.03007 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a525-269202d0ed8477f559f6b3d76a2680c41d88d87ab1be0aa2b4cde3145ac7f0443 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:10:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a525-269202d0ed8477f559f6b3d76a2680c41d88d87ab1be0aa2b4cde3145ac7f0443 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2570282535?pq-origsite=%requestingapplication% |
| PQID | 2570282535 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2570282535 |
| PublicationCentury | 2000 |
| PublicationDate | 20210907 |
| PublicationDateYYYYMMDD | 2021-09-07 |
| PublicationDate_xml | – month: 09 year: 2021 text: 20210907 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7693357 |
| SecondaryResourceType | preprint |
| Snippet | Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Adiabatic flow Algorithms Complexity Graphs Hamiltonian functions Ising model Machine learning Markov chains Neutral atoms Phase transitions Probability distribution Quantum computers Rydberg states Sampling Statistical analysis Statistical methods |
| Title | Quantum Sampling Algorithms, Phase Transitions, and Computational Complexity |
| URI | https://www.proquest.com/docview/2570282535 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UNPHk7_gDyQ4emXRdt3YnowaiCZIpHPBEuv4AEhi4DaL_vW0ZejDx4rFZljRvy_v63vv6fQBcUxr6jAXcNVLorj7fQpdFgrpYaTCFMiBK2YvCHdLt0sEgisuGW17SKjc50SZqMeemR940bmvmnqUf3C7eXeMaZaarpYXGNqgalQTPUvd63z0WFBJ9YvbXw0wr3dVk2cdkdaPrHKNtCiH5lYItrrT3_7ujA1CN2UJmh2BLpkdg1_I5eX4MOi9LHbLlzOkxQxlPR87ddKRfLsazvOHEY41djoWpNWOr4bBUOGuHh7I7aFdGLbP4PAH9dqv_8OiWxgkuC5AhrUUIIgGl0NBDlK4ZVJj4goQMhRRy7AlKBSUs8RIJGUMJ5kL6Hg4YJwpi7J-CSjpP5RlwZBjpkowGQheKWHk6IykksM9ZEjAIpToHtU1shuXPnw9_AnPx9-NLsIcMRcTMZ0gNVIpsKa_ADl8Vkzyrg-p9qxu_1u031av46Tl--wKmhayE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ74jJ58xwdqD3qzst0-dnswxvgIRCQYOHAj2-4umGhBCio_yv_o7AJ6MPHGwWPTpNl0Zr95fTMDcMJ55AsRpq4Zhe6if0tcEUvuBhqNKVEh09o2CldYtcqbzbg2B5_TXhhDq5xiogVq2U1Njrxotq2ZPks_vOy9umZrlKmuTldojNXiXo3eMWTLL8o3KN9TSu9uG9cld7JVwBUhNYyuGON9SZREXGYaHWodJb5kkaARJ2ngSc4lZyLxEkWEoEmQSuV7QShSpkkQ-PjZeVhEL4LGlilY_07p0Iihg-6Pa6d2UlhR9D-e3s4xrDKjVAlhvxDfmrG7tX_2A9ZhsSZ6qr8BcyrbhGXLVk3zLag8DlEhhi9OXRhCfNZ2rp7beNZB5yU_c2odtMyONcJjPtqZIzLpjPdXTHKf9snMAh2MtqExi_PvwELWzdQuOCqKMeDkocQwONAe4q2mMvBTkYSCEKX3oDAVRWtytfPWjxz2_359DCulxkOlVSlX7w9glRoyjKlEsQIsDPpDdQhL6dvgKe8fWTVyoDVjqX0BUBsEcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Sampling+Algorithms%2C+Phase+Transitions%2C+and+Computational+Complexity&rft.jtitle=arXiv.org&rft.au=Wild%2C+Dominik+S&rft.au=Sels%2C+Dries&rft.au=Pichler%2C+Hannes&rft.au=Zanoci%2C+Cristian&rft.date=2021-09-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2109.03007 |