Critical scaling in hidden state inference for linear Langevin dynamics

We consider the problem of inferring the dynamics of unknown (i.e. hidden) nodes from a set of observed trajectories and study analytically the average prediction error and the typical relaxation time of correlations between errors. We focus on a stochastic linear dynamics of continuous degrees of f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Bravi, Barbara, Sollich, Peter
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 25.04.2017
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the problem of inferring the dynamics of unknown (i.e. hidden) nodes from a set of observed trajectories and study analytically the average prediction error and the typical relaxation time of correlations between errors. We focus on a stochastic linear dynamics of continuous degrees of freedom interacting via random Gaussian couplings in the infinite network size limit. The expected error on the hidden time courses can be found as the equal-time hidden-to-hidden covariance of the probability distribution conditioned on observations. In the stationary regime, we analyze the phase diagram in the space of relevant parameters, namely the ratio between the numbers of observed and hidden nodes, the degree of symmetry of the interactions and the amplitudes of the hidden-to-hidden and hidden-to-observed couplings relative to the decay constant of the internal hidden dynamics. In particular, we identify critical regions in parameter space where the relaxation time and the inference error diverge, and determine the corresponding scaling behaviour.
AbstractList We consider the problem of inferring the dynamics of unknown (i.e. hidden) nodes from a set of observed trajectories and study analytically the average prediction error and the typical relaxation time of correlations between errors. We focus on a stochastic linear dynamics of continuous degrees of freedom interacting via random Gaussian couplings in the infinite network size limit. The expected error on the hidden time courses can be found as the equal-time hidden-to-hidden covariance of the probability distribution conditioned on observations. In the stationary regime, we analyze the phase diagram in the space of relevant parameters, namely the ratio between the numbers of observed and hidden nodes, the degree of symmetry of the interactions and the amplitudes of the hidden-to-hidden and hidden-to-observed couplings relative to the decay constant of the internal hidden dynamics. In particular, we identify critical regions in parameter space where the relaxation time and the inference error diverge, and determine the corresponding scaling behaviour.
Author Sollich, Peter
Bravi, Barbara
Author_xml – sequence: 1
  givenname: Barbara
  surname: Bravi
  fullname: Bravi, Barbara
– sequence: 2
  givenname: Peter
  surname: Sollich
  fullname: Sollich, Peter
BookMark eNotjcFKAzEURYMoWGs_wF3A9dTkZZJMljJoFQbcdF_eZF5qSs1oMi369w7o5h4uHO69YZdpTMTYnRTrutFaPGD-jue1NBLWQjprLtgClJJVUwNcs1UpByEEGAtaqwXbtDlO0eORlzli2vOY-HscBkq8TDjR3ANlSp54GDOfFcLMO0x7Os_q8JPwI_pyy64CHgut_rlk2-enbftSdW-b1_axq1CDrsCAl07UWgarBqkDOmEdofPKDy4oi7XzPngYXAMaqXdO9gKNChSM6pVasvu_2c88fp2oTLvDeMppftyBsEYaYxutfgGzek9g
ContentType Paper
Copyright 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1612.01976
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a525-262c190451f73d15fa9079ea9c3cd9f37a49ccfc2d9825aeb991b0a63fef63b33
IEDL.DBID M7S
IngestDate Mon Jun 30 09:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-262c190451f73d15fa9079ea9c3cd9f37a49ccfc2d9825aeb991b0a63fef63b33
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2076166785?pq-origsite=%requestingapplication%
PQID 2076166785
PQPubID 2050157
ParticipantIDs proquest_journals_2076166785
PublicationCentury 2000
PublicationDate 20170425
PublicationDateYYYYMMDD 2017-04-25
PublicationDate_xml – month: 04
  year: 2017
  text: 20170425
  day: 25
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6212723
SecondaryResourceType preprint
Snippet We consider the problem of inferring the dynamics of unknown (i.e. hidden) nodes from a set of observed trajectories and study analytically the average...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Conditioning
Couplings
Covariance
Dynamics
Error analysis
Inference
Mathematical analysis
Nodes
Parameter identification
Phase diagrams
Relaxation time
Scaling
Trajectory analysis
Title Critical scaling in hidden state inference for linear Langevin dynamics
URI https://www.proquest.com/docview/2076166785
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BCxIT3-KjVB5YUxI7seMJCdQCElQRdChT5fhDZElLUip-PrabwIDEwhLJSobItu6ez-_eA7gkzCSKOlK7zmkQJyIMUo5ZoJTURtJQY2W82QQbj9PplGdNwa1uaJVtTPSBWs2lq5G7SgiNqA2tyfXiPXCuUe52tbHQ2ISuU0mIPHXv5bvGgimziJmsLzO9dNeVqD6L1cDCHDyw4IbRXyHY55XR7n__aA-6mVjoah82dHkA257PKetDuGstDFBtHzY9oaJEb04upES-hwgVbacfsrAVObApKvToWg1W9lO1Nqqvj2AyGk5u74PGMyEQCXZ8NSxtio-TyDCiosQIe_jlWnBJpOKGMBFzKY3EitujodC5hYd5KCgx2lCSE3IMnXJe6hNAYWSIkTx1Evix0EqEPJSCpV7DMNLRKfTaaZk1-76e_czJ2d-vz2EHuwQZxgFOetBZVh_6ArbkalnUVR-6N8Nx9tz3y2lH2cNT9voFppqrbA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHGlMRJnHhADEBp1VJVokO3yPVDZCAtSSn0R_EfObsNDEhsHViyJIqinP3dd-e7-xC68CMdSmqK2tWIOkHIXSdmJHKkFEoL6ioitRWbiHq9eDhk_Qr6LHthTFlliYkWqOVYmBy5yYRQjwK0hjeTV8eoRpnT1VJCY7EsOmr-DiFbcd2-A_teEtK8H9y2nKWqgMNDYiq6iAAnGISejnzphZpDeMgUZ8IXkmk_4gETQgsiGQRPXI2AQI1cTn2tNPVHJv8JiF8DFkGYrRR8-k7pEBoBQfcXZ6d2UtgVzz_SWQNYFWkAl4roL8S3bqy59c9-wDaq9flE5TuoorJdtG6rVUWxhx5KgQZcwAWcL04z_GyGoWTYdkjhtOxjxEDKsaHSPMdd00gxg0flPOMv8KZ9NFjFpx-gajbO1CHCrqd9LVhsBvwHXEnuMlfwKLYTGj3lHaF6aYVkuauL5McEx3_fPkcbrcFjN-m2e50TtEkMFXADh4R1VJ3mb-oUrYnZNC3yM7uCMEpWbLAvklkEsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+scaling+in+hidden+state+inference+for+linear+Langevin+dynamics&rft.jtitle=arXiv.org&rft.au=Bravi%2C+Barbara&rft.au=Sollich%2C+Peter&rft.date=2017-04-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1612.01976