On Kemeny's constant and stochastic complement

Given a stochastic matrix \(P\) partitioned in four blocks \(P_{ij}\), \(i,j=1,2\), Kemeny's constant \(\kappa(P)\) is expressed in terms of Kemeny's constants of the stochastic complements \(P_1=P_{11}+P_{12}(I-P_{22})^{-1}P_{21}\), and \(P_2=P_{22}+P_{21}(I-P_{11})^{-1}P_{12}\). Specific...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Bini, Dario Andrea, Durastante, Fabio, Kim, Sooyeong, Meini, Beatrice
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 30.08.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a stochastic matrix \(P\) partitioned in four blocks \(P_{ij}\), \(i,j=1,2\), Kemeny's constant \(\kappa(P)\) is expressed in terms of Kemeny's constants of the stochastic complements \(P_1=P_{11}+P_{12}(I-P_{22})^{-1}P_{21}\), and \(P_2=P_{22}+P_{21}(I-P_{11})^{-1}P_{12}\). Specific cases concerning periodic Markov chains and Kronecker products of stochastic matrices are investigated. Bounds to Kemeny's constant of perturbed matrices are given. Relying on these theoretical results, a divide-and-conquer algorithm for the efficient computation of Kemeny's constant of graphs is designed. Numerical experiments performed on real-world problems show the high efficiency and reliability of this algorithm.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2312.13201