On Kemeny's constant and stochastic complement
Given a stochastic matrix \(P\) partitioned in four blocks \(P_{ij}\), \(i,j=1,2\), Kemeny's constant \(\kappa(P)\) is expressed in terms of Kemeny's constants of the stochastic complements \(P_1=P_{11}+P_{12}(I-P_{22})^{-1}P_{21}\), and \(P_2=P_{22}+P_{21}(I-P_{11})^{-1}P_{12}\). Specific...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
30.08.2024
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given a stochastic matrix \(P\) partitioned in four blocks \(P_{ij}\), \(i,j=1,2\), Kemeny's constant \(\kappa(P)\) is expressed in terms of Kemeny's constants of the stochastic complements \(P_1=P_{11}+P_{12}(I-P_{22})^{-1}P_{21}\), and \(P_2=P_{22}+P_{21}(I-P_{11})^{-1}P_{12}\). Specific cases concerning periodic Markov chains and Kronecker products of stochastic matrices are investigated. Bounds to Kemeny's constant of perturbed matrices are given. Relying on these theoretical results, a divide-and-conquer algorithm for the efficient computation of Kemeny's constant of graphs is designed. Numerical experiments performed on real-world problems show the high efficiency and reliability of this algorithm. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2312.13201 |