Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation

Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanical engineering Vol. 134; no. 5; p. 051001
Main Authors: Campbell, Ian C, Ries, Jared, Dhawan, Saurabh S, Quyyumi, Arshed A, Taylor, W Robert, Oshinski, John N
Format: Journal Article
Language:English
Published: United States 01.05.2012
Subjects:
ISSN:1528-8951, 1528-8951
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.
AbstractList Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.
Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.
Author Dhawan, Saurabh S
Campbell, Ian C
Oshinski, John N
Quyyumi, Arshed A
Ries, Jared
Taylor, W Robert
Author_xml – sequence: 1
  givenname: Ian C
  surname: Campbell
  fullname: Campbell, Ian C
  email: iancampbell@gatech.edu
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA. iancampbell@gatech.edu
– sequence: 2
  givenname: Jared
  surname: Ries
  fullname: Ries, Jared
– sequence: 3
  givenname: Saurabh S
  surname: Dhawan
  fullname: Dhawan, Saurabh S
– sequence: 4
  givenname: Arshed A
  surname: Quyyumi
  fullname: Quyyumi, Arshed A
– sequence: 5
  givenname: W Robert
  surname: Taylor
  fullname: Taylor, W Robert
– sequence: 6
  givenname: John N
  surname: Oshinski
  fullname: Oshinski, John N
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22757489$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYOMOA9d-AckSzcdk7Rp06UM4wMG3Oi6pMkNRtKkNqnQf28dR3B1Lud8HLhnjRY-eEDompItpZTf0W1BSFkKeoZWlDORiZrTxb97idYxfhBCqSjIBVoyVvGqEPUKTXtjQCUcDLbeQcJf4IKyacL9EIx1EHHwuJfJgk9Z7EFZYxVWoevHNLvBS4eNG63GevKysyriaLvRHbP405veASs5hDQzrTXjoI7ZJTo30kW4OukGvT3sX3dP2eHl8Xl3f8gkZ0XKhCJalVIJoZlhORAQSsiKtaXQpBVESAAGtazyoiyqss4155JwWkpKdZVTtkG3v73zQ58jxNR0NipwTnoIY2woYTnPi4qVM3pzQse2A930g-3kMDV_c7FvVmtvMQ
CitedBy_id crossref_primary_10_1016_j_jvs_2017_08_094
crossref_primary_10_1016_j_medengphy_2020_07_001
crossref_primary_10_1002_cnm_70021
crossref_primary_10_1007_s13239_021_00559_2
crossref_primary_10_1016_j_compbiomed_2020_103644
crossref_primary_10_1016_j_cmpbup_2025_100194
crossref_primary_10_1063_5_0220173
crossref_primary_10_1007_s13239_013_0165_3
crossref_primary_10_1007_s10444_019_09722_9
crossref_primary_10_1177_1708538114552836
crossref_primary_10_1016_j_jtcvs_2016_09_040
crossref_primary_10_3390_bioengineering12050437
crossref_primary_10_1007_s10554_016_0934_9
crossref_primary_10_1007_s13239_023_00679_x
crossref_primary_10_1016_j_compbiomed_2023_107287
crossref_primary_10_1016_j_jbiomech_2021_110893
crossref_primary_10_1159_000526872
crossref_primary_10_1007_s10237_016_0804_3
crossref_primary_10_1155_2021_2618625
crossref_primary_10_1177_0954406220911397
crossref_primary_10_1016_j_jbiomech_2017_06_005
crossref_primary_10_1002_cnm_2856
crossref_primary_10_1016_j_avsg_2017_04_016
crossref_primary_10_3390_app13085095
crossref_primary_10_3389_fphys_2016_00238
crossref_primary_10_1080_19942060_2021_2013322
crossref_primary_10_1007_s13239_022_00608_4
crossref_primary_10_1016_j_jbiomech_2016_11_025
crossref_primary_10_1016_j_jbiomech_2015_11_009
crossref_primary_10_1016_j_compfluid_2023_106043
crossref_primary_10_1002_cnm_70048
crossref_primary_10_1002_jmri_24423
crossref_primary_10_1109_TBME_2018_2880606
crossref_primary_10_1080_10255842_2024_2429789
crossref_primary_10_1016_j_cmpb_2021_106435
crossref_primary_10_1109_JBHI_2014_2305575
crossref_primary_10_1002_cnm_2868
crossref_primary_10_1007_s10237_023_01745_y
crossref_primary_10_1007_s40430_023_04441_1
crossref_primary_10_1063_5_0226294
crossref_primary_10_3390_mca29050071
crossref_primary_10_1177_0954406219861127
crossref_primary_10_3389_fbioe_2022_855791
crossref_primary_10_1007_s10439_019_02307_z
crossref_primary_10_1007_s10237_020_01395_4
crossref_primary_10_1007_s40430_021_03002_8
crossref_primary_10_1038_s41598_021_95315_w
crossref_primary_10_1007_s10237_021_01542_5
crossref_primary_10_1016_j_jbiomech_2020_110019
crossref_primary_10_1017_jfm_2018_329
crossref_primary_10_1080_10255842_2021_1876036
crossref_primary_10_1016_j_cmpb_2022_106826
crossref_primary_10_1177_15266028221091890
crossref_primary_10_1016_j_compfluid_2021_105123
crossref_primary_10_1016_j_compfluid_2021_105201
crossref_primary_10_1017_S0962492917000046
crossref_primary_10_1016_j_euromechflu_2023_05_009
crossref_primary_10_1016_j_cma_2016_01_007
crossref_primary_10_1109_TBME_2020_2970244
crossref_primary_10_1007_s13239_013_0146_6
crossref_primary_10_1063_5_0245958
crossref_primary_10_1093_bmb_ldw049
crossref_primary_10_3390_app14198577
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1115/1.4006681
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 22757489
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL070531
– fundername: NHLBI NIH HHS
  grantid: R01 HL70531
GroupedDBID ---
-~X
.DC
.GJ
29J
4.4
53G
5AI
5GY
6TJ
AAYJJ
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ACXMS
ADPDT
AI.
ALEEW
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
VH1
WHG
ZE2
7X8
AGNGV
ID FETCH-LOGICAL-a524t-8c0dc6ac88d2f23e0e8c8a72b68d0b808aee2e9a734647693d55a0516a11d7312
IEDL.DBID 7X8
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305793100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-8951
IngestDate Wed Oct 01 14:17:25 EDT 2025
Thu Apr 03 07:07:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524t-8c0dc6ac88d2f23e0e8c8a72b68d0b808aee2e9a734647693d55a0516a11d7312
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3625536
PMID 22757489
PQID 1023534726
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1023534726
pubmed_primary_22757489
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2012
References 15191145 - IEEE Trans Med Imaging. 2004 Jun;23(6):704-13
11339329 - Ann Biomed Eng. 2001 Apr;29(4):321-9
15923735 - Stud Health Technol Inform. 2005;113:1-25
16706586 - J Biomech Eng. 2006 Jun;128(3):371-9
19675980 - Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):431-44
15567699 - Med Eng Phys. 2004 Dec;26(10):823-40
10396691 - J Biomech Eng. 1999 Jun;121(3):265-72
20064248 - BMC Med Imaging. 2010;10:1
19102572 - J Biomech Eng. 2009 Feb;131(2):021013
8434819 - Ann Biomed Eng. 1993;21(1):45-9
18854602 - Physiol Meas. 2008 Nov;29(11):1335-49
11701491 - Annu Rev Biomed Eng. 1999;1:299-329
9685141 - J Vasc Surg. 1998 Jul;28(1):143-56
11754454 - Magn Reson Med. 2002 Jan;47(1):149-59
10475577 - Physiol Meas. 1999 Aug;20(3):219-40
3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302
15253120 - Physiol Meas. 2004 Jun;25(3):691-7
11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20
12086000 - Ann Biomed Eng. 2002 Apr;30(4):483-97
18839484 - Psychol Bull. 1979 Mar;86(2):420-8
14558652 - Proc Inst Mech Eng H. 2003;217(5):393-403
20590284 - J Biomech Eng. 2010 Jul;132(7):071006
15180490 - Curr Drug Targets Cardiovasc Haematol Disord. 2004 Jun;4(2):183-97
17408332 - J Biomech Eng. 2007 Apr;129(2):273-8
14368548 - J Physiol. 1955 Mar 28;127(3):553-63
12063451 - J Thorac Cardiovasc Surg. 2002 Jun;123(6):1060-6
21142322 - J Biomech Eng. 2010 Dec;132(12):121008
References_xml – reference: 15567699 - Med Eng Phys. 2004 Dec;26(10):823-40
– reference: 11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20
– reference: 17408332 - J Biomech Eng. 2007 Apr;129(2):273-8
– reference: 15191145 - IEEE Trans Med Imaging. 2004 Jun;23(6):704-13
– reference: 19102572 - J Biomech Eng. 2009 Feb;131(2):021013
– reference: 16706586 - J Biomech Eng. 2006 Jun;128(3):371-9
– reference: 18839484 - Psychol Bull. 1979 Mar;86(2):420-8
– reference: 11339329 - Ann Biomed Eng. 2001 Apr;29(4):321-9
– reference: 14368548 - J Physiol. 1955 Mar 28;127(3):553-63
– reference: 19675980 - Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):431-44
– reference: 11754454 - Magn Reson Med. 2002 Jan;47(1):149-59
– reference: 15180490 - Curr Drug Targets Cardiovasc Haematol Disord. 2004 Jun;4(2):183-97
– reference: 10475577 - Physiol Meas. 1999 Aug;20(3):219-40
– reference: 12086000 - Ann Biomed Eng. 2002 Apr;30(4):483-97
– reference: 20590284 - J Biomech Eng. 2010 Jul;132(7):071006
– reference: 15253120 - Physiol Meas. 2004 Jun;25(3):691-7
– reference: 18854602 - Physiol Meas. 2008 Nov;29(11):1335-49
– reference: 10396691 - J Biomech Eng. 1999 Jun;121(3):265-72
– reference: 21142322 - J Biomech Eng. 2010 Dec;132(12):121008
– reference: 9685141 - J Vasc Surg. 1998 Jul;28(1):143-56
– reference: 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302
– reference: 12063451 - J Thorac Cardiovasc Surg. 2002 Jun;123(6):1060-6
– reference: 15923735 - Stud Health Technol Inform. 2005;113:1-25
– reference: 8434819 - Ann Biomed Eng. 1993;21(1):45-9
– reference: 20064248 - BMC Med Imaging. 2010;10:1
– reference: 14558652 - Proc Inst Mech Eng H. 2003;217(5):393-403
– reference: 11701491 - Annu Rev Biomed Eng. 1999;1:299-329
SSID ssj0011840
Score 2.351734
Snippet Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 051001
SubjectTerms Carotid Arteries - anatomy & histology
Carotid Arteries - diagnostic imaging
Carotid Arteries - physiology
Computer Simulation
Hemodynamics
Humans
Hydrodynamics
Magnetic Resonance Angiography
Middle Aged
Models, Anatomic
Pulsatile Flow
Radiography
Stress, Mechanical
Title Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation
URI https://www.ncbi.nlm.nih.gov/pubmed/22757489
https://www.proquest.com/docview/1023534726
Volume 134
WOSCitedRecordID wos000305793100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwHMeDOhE9-JjvFxG8xrVp0qQnEXF42dhBYbeR5gEFbee6Cf735tdmzIsgeCk9tKU0r29-v1-_H4RulckzC5azlFNNmIg0yYWJiFRU5tY5YXPVwCbEcCjH42wUAm51KKtczonNRG0qDTHyHlgM8IQJmt5PPwhQoyC7GhAa66iTeCkDJV1ivMoiwO6l8UulkkgvJYKzkBdBvfiOwWor49-VZbPC9Pf--277aDdoS_zQdoYDtGbLLtr54TjYRVuA4gS-mz8dhLT6IfpqPYxx5XBR-obEUEikvT7HAeld46rEwYKVwM-ZUGCEdUOECNFE7N4WhcGmJdzXuC7eAxmshud6nYkBETT31-SFW8zaUOEReu0_vTw-k8BkIIpTNidSR0anSktpqKOJjazUUgmap9JEuYykspbaTImEpQw4i4Zz5Qd-quLYiCSmx2ijrEp7irB1xsRKpkzBLi9NM2VsLrUzllnuMn6GbpZfe-L7PCQyVGmrRT1Zfe8zdNI22WTamnNMKBUcHHXO_3D3Bdr2-oe29YuXqOP8iLdXaFN_zot6dt10Jn8cjgbfpJLXqw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+inlet+velocity+profiles+on+patient-specific+computational+fluid+dynamics+simulations+of+the+carotid+bifurcation&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Campbell%2C+Ian+C&rft.au=Ries%2C+Jared&rft.au=Dhawan%2C+Saurabh+S&rft.au=Quyyumi%2C+Arshed+A&rft.date=2012-05-01&rft.eissn=1528-8951&rft.volume=134&rft.issue=5&rft.spage=051001&rft_id=info:doi/10.1115%2F1.4006681&rft_id=info%3Apmid%2F22757489&rft_id=info%3Apmid%2F22757489&rft.externalDocID=22757489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon