An Augmented Lagrangian Method for Optimization Problems in Banach Spaces

We propose a variant of the classical augmented Lagrangian method for constrained optimization problems in Banach spaces. Our theoretical framework does not require any convexity or second-order assumptions and allows the treatment of inequality constraints with infinite-dimensional image space. Mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Kanzow, Christian, Steck, Daniel, Wachsmuth, Daniel
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.07.2018
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a variant of the classical augmented Lagrangian method for constrained optimization problems in Banach spaces. Our theoretical framework does not require any convexity or second-order assumptions and allows the treatment of inequality constraints with infinite-dimensional image space. Moreover, we discuss the convergence properties of our algorithm with regard to feasibility, global optimality, and KKT conditions. Some numerical results are given to illustrate the practical viability of the method.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1807.04467