A likelihood-based approach for multivariate categorical response regression in high dimensions

We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the ma...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Molstad, Aaron J, Rothman, Adam J
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 23.01.2022
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical.
AbstractList We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical.
Author Molstad, Aaron J
Rothman, Adam J
Author_xml – sequence: 1
  givenname: Aaron
  surname: Molstad
  middlename: J
  fullname: Molstad, Aaron J
– sequence: 2
  givenname: Adam
  surname: Rothman
  middlename: J
  fullname: Rothman, Adam J
BookMark eNotjstOwzAURC0EEqX0A9hZYp1yc23nsawqXlIlNt1HTnyTuKR2sJOKzycINjOjs5iZO3btvCPGHlLYykIpeNLh2162CJBvIS-VuGIrFCJNCol4yzYxngAAsxyVEitW7fhgP2mwvfcmqXUkw_U4Bq-bnrc-8PM8TPaig9UT8WaRzgfb6IEHiqN3kZbQLTla77h1vLddz409k_sl8Z7dtHqItPn3NTu-PB_3b8nh4_V9vzskWqFMSKUZZaLQmJuUclOgMLkqoVE1ygZA1rIWoFCDpqYohBELgQyoLY1MoRRr9vhXuzz_milO1cnPwS2LFUqUKivTTIofROtYLg
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2007.07953
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-e516e638a27d1e7d823d7590c5b24c004b4b3052a0aec883d34b4060ef9d41093
IEDL.DBID M7S
IngestDate Mon Jun 30 09:19:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-e516e638a27d1e7d823d7590c5b24c004b4b3052a0aec883d34b4060ef9d41093
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2424569164?pq-origsite=%requestingapplication%
PQID 2424569164
PQPubID 2050157
ParticipantIDs proquest_journals_2424569164
PublicationCentury 2000
PublicationDate 20220123
PublicationDateYYYYMMDD 2022-01-23
PublicationDate_xml – month: 01
  year: 2022
  text: 20220123
  day: 23
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7831576
SecondaryResourceType preprint
Snippet We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Asymptotic methods
Bivariate analysis
Computer simulation
First order algorithms
Multivariate analysis
Regression models
Title A likelihood-based approach for multivariate categorical response regression in high dimensions
URI https://www.proquest.com/docview/2424569164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3iUygOr1cSx85gQoFYgQRVBhzJVjn1UEVVaklLx8zk7KUgMLGzJZYkuursvd5-_I-SSK62Ery1JSgqGFSJiiBIEC9HIPSMR9jsR14doOIzH4yRtGm5VQ6tc50SXqM1c2x55j7sRHYIZcbV4Z3ZrlJ2uNis0NknbqiT4jrr3_N1j4WGEiDmoh5lOuqunys981SgXRoldifwrBbu6Mtj97xvtkXaqFlDukw0oDsi243Pq6pBMruksf4NZblWLmS1Vhq7lwyniVOqIhCv8UUasSS0ralqLhdCyJs0CXkxrjmxB84JaWWNq7CoAa6mOyGjQH93esWaXAlMSXQ_SDwFDTfHI-BCZmAcmkomnZcaFxkDJRIaRz5WnQMdxYAK0eKEHr4kRVnHqmLSKeQEnhEowAfiK-1kIQhmZZVp7MgN7ylZDEpySztpdkyYeqsmPr87-fnxOdrg9YOD5jAcd0lqWH3BBtvRqmVdll7Rv-sP0qes-M96l94_pyxd1hbOJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEN4Q0OjJd3yg7kGPDe2229KDMUYlEJCQyIFbs90dSSMp2CLqj_I_OrulmnjwxsFbM720nWd3vvmGkAsmpPAcqUFS3LMwQwQWVgme5aOQ2Ypj2W9IXHtBv98cjcJBhXyWszAaVlnGRBOo1VTqM_IGMy06LGa869mLpbdG6e5quUKjMIsufLzhL1t-1blD_V4y1rof3rat5VYBS3B8COCOD2h0ggXKgUA1masCHtqSx8yTaDKxF6MPMGELkM2mq1yU2L4NT6HyCu4ljPg1rCJYaJCCj99HOswPsEB3i96pYQpriOw9WSyJEoNQb2D-FfFNGmtt_bMPsE1qAzGDbIdUIN0l6watKvM9Et3QSfIMk0RzMls6EStakqNTrMKpgUkuBDrXHKjGfI0LKhSaFZBgwItxgQBOaZJSTdpMlV50oCX5Phmu4pUOSDWdpnBIKAflgiOYE_vgCcXjWEqbx6BniCWE7hGpl9qJlt6eRz-qOf779jnZaA8felGv0--ekE2mRylsx2JunVTn2SuckjW5mCd5dmYsi5JoxYr8Ar6MCZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+likelihood-based+approach+for+multivariate+categorical+response+regression+in+high+dimensions&rft.jtitle=arXiv.org&rft.au=Molstad%2C+Aaron+J&rft.au=Rothman%2C+Adam+J&rft.date=2022-01-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2007.07953