Non-Linear Dimensionality Reduction with a Variational Encoder Decoder to Understand Convective Processes in Climate Models

Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Behrens, Gunnar, Beucler, Tom, Gentine, Pierre, Iglesias-Suarez, Fernando, Pritchard, Michael, Eyring, Veronika
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 26.07.2022
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties
AbstractList Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties
Author Beucler, Tom
Gentine, Pierre
Pritchard, Michael
Eyring, Veronika
Behrens, Gunnar
Iglesias-Suarez, Fernando
Author_xml – sequence: 1
  givenname: Gunnar
  surname: Behrens
  fullname: Behrens, Gunnar
– sequence: 2
  givenname: Tom
  surname: Beucler
  fullname: Beucler, Tom
– sequence: 3
  givenname: Pierre
  surname: Gentine
  fullname: Gentine, Pierre
– sequence: 4
  givenname: Fernando
  surname: Iglesias-Suarez
  fullname: Iglesias-Suarez, Fernando
– sequence: 5
  givenname: Michael
  surname: Pritchard
  fullname: Pritchard, Michael
– sequence: 6
  givenname: Veronika
  surname: Eyring
  fullname: Eyring, Veronika
BookMark eNotj01LAzEYhIMoWGt_gLeA563ZN8kme5S1fkD9QKrXkibvYso20U1aFf-8i_U0MwzPwJyQwxADEnJWsqnQUrIL03_53RSAiSnTiukDMgLOy0ILgGMySWnNGINKgZR8RH4eYijmPqDp6ZXfYEg-BtP5_E2f0W1tHiL99PmNGvpqem_yX09nwUaHA4N7zZG-hMGkbIKjTQw7HNgd0qc-WkwJE_WBNp3fmIz0fmC6dEqOWtMlnPzrmCyuZ4vmtpg_3tw1l_PCSBCFU6XlaKWtlbFspZ3gUhlEDdLalq2gBdAWa4eV4FWrVSWsdsyKtrZ1y2s-Juf72fc-fmwx5eU6bvvhRFpCJUGBLkvBfwHMp2Mj
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2204.08708
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-d71c3ec5c97ac0b8d4357aee825ccf0b2f228ce9de6436f8764c8d0c4f9c9f393
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:12:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-d71c3ec5c97ac0b8d4357aee825ccf0b2f228ce9de6436f8764c8d0c4f9c9f393
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2652728114?pq-origsite=%requestingapplication%
PQID 2652728114
PQPubID 2050157
ParticipantIDs proquest_journals_2652728114
PublicationCentury 2000
PublicationDate 20220726
PublicationDateYYYYMMDD 2022-07-26
PublicationDate_xml – month: 07
  year: 2022
  text: 20220726
  day: 26
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8019073
SecondaryResourceType preprint
Snippet Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Climate models
Convection
Cumulus clouds
Deep learning
Long wave radiation
Machine learning
Moisture content
Moisture effects
Neural networks
Reduction
Simulation
Thermal energy
Title Non-Linear Dimensionality Reduction with a Variational Encoder Decoder to Understand Convective Processes in Climate Models
URI https://www.proquest.com/docview/2652728114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60VfDkGx-17MHr2rh57kmwVhQ0hFpLPZXN7AYCJalJLYJ_3tkkrQfBk6ccQmDZzM5-M_PNN4RcCoUYH68a5kmMdJxEKhbzOGYucA-4cmOvqpiOn_wwDCYTETXt0WVDq1z5xMpR12rPhreNTrincjAZ8x73XO7zAMH8zfydmRlSptbaDNTYJG0jvGW1SDt6fI7e1jkX7vmIoO26uFlJefVk8Zkurzg3cqdousEvl1zdM_e7_7vCPVyZnOtin2zo7IBsV2xPKA_JV5hnDKNQtHJ6Z-T9a2kOBOR0aKRczc-iJkNLJR1jMN0kDOkgMx3w-I2un4ucvq6bY2jfENgr90mb9gNd0jSj_VmKsFhTM3ZtVh6R0f1g1H9gzRQGJl3uMOVfg63BBeFLsOJAIb7ypdYYWQIkVswTzgPQQmnENl6CztWBQFngJAJEYgv7mLSyPNMnhEoZAAhEoAow6BOOtAxlxebSkpaQ0jslndXGTpuTVE5_9vHs79fnZIeb1gTLZ9zrkNai-NAXZAuWi7QsuqR9OwijYddwO1-6jWF8A7ARy6k
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEF5KVfTkGx9V96DH1TjNaw_ioa20WEuRWvRUNrMbCEiqSX3hb_I_OpumehC8efCUQwhkM5Nv5psnY4dSk49Ppkb4ipiOGystIogi4SH4CNqL_CJjOuwGvV54eyv7FfYx64WxZZUzTCyAWo_RxshPwPcggJDc9_OHR2G3Rtns6myFxlQtLs3bC1G2_KzTJPkeAVy0Bo22KLcKCOWBK3RwinWDHspAoROFmvyFQBlDTAkxdiKIAUI0Uhuy1X5MYOFiqB10Y4kyrtvZS4T4cy7pulNlc_3OVf_uK6gDfkAuen2aPS1mhZ2o7DV5Pgaw81Tp3wh_YH5hyC6W_9knWKGjqweTrbKKSdfYQlGvivk6e--NU0E8mt6GN-2CgulwEaIU_NoOo7Xqxm2MmSs-VFlShjx5K7U9_PSMmV4nY37z1d7DG7YEvzAAvGygMDlPUt64T8ixN9wujrvPN9jgL467yarpODVbjCsVIkryoTUSbZWucmzRTR2UoxyplL_NajPJjUosyEffYtv5_fYBW2wPrrqjbqd3ucuWwDZaOIEAv8aqk-zJ7LF5fJ4kebZf6h1noz8W8ydq_xuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Linear+Dimensionality+Reduction+with+a+Variational+Encoder+Decoder+to+Understand+Convective+Processes+in+Climate+Models&rft.jtitle=arXiv.org&rft.au=Behrens%2C+Gunnar&rft.au=Beucler%2C+Tom&rft.au=Gentine%2C+Pierre&rft.au=Iglesias-Suarez%2C+Fernando&rft.date=2022-07-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2204.08708