An efficient plasma-surface interaction surrogate model for sputtering processes based on autoencoder neural networks

Simulations of thin film sputter deposition require the separation of the plasma and material transport in the gas-phase from the growth/sputtering processes at the bounding surfaces. Interface models based on analytic expressions or look-up tables inherently restrict this complex interaction to a b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Gergs, Tobias, Borislavov, Borislav, Trieschmann, Jan
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 06.09.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Simulations of thin film sputter deposition require the separation of the plasma and material transport in the gas-phase from the growth/sputtering processes at the bounding surfaces. Interface models based on analytic expressions or look-up tables inherently restrict this complex interaction to a bare minimum. A machine learning model has recently been shown to overcome this remedy for Ar ions bombarding a Ti-Al composite target. However, the chosen network structure (i.e., a multilayer perceptron) provides approximately 4 million degrees of freedom, which bears the risk of overfitting the relevant dynamics and complicating the model to an unreliable extend. This work proposes a conceptually more sophisticated but parameterwise simplified regression artificial neural network for an extended scenario, considering a variable instead of a single fixed Ti-Al stoichiometry. A convolutional \(\beta\)-variational autoencoder is trained to reduce the high-dimensional energy-angular distribution of sputtered particles to a latent space representation of only two components. In addition to a primary decoder which is trained to reconstruct the input energy-angular distribution, a secondary decoder is employed to reconstruct the mean energy of incident Ar ions as well as the present Ti-Al composition. The mutual latent space is hence conditioned on these quantities. The trained primary decoder of the variational autoencoder network is subsequently transferred to a regression network, for which only the mapping to the particular latent space has to be learned. While obtaining a competitive performance, the number of degrees of freedom is drastically reduced to 15,111 and 486 parameters for the primary decoder and the remaining regression network, respectively. The underlying methodology is general and can easily be extended to more complex physical descriptions with a minimal amount of data required.
AbstractList Simulations of thin film sputter deposition require the separation of the plasma and material transport in the gas-phase from the growth/sputtering processes at the bounding surfaces. Interface models based on analytic expressions or look-up tables inherently restrict this complex interaction to a bare minimum. A machine learning model has recently been shown to overcome this remedy for Ar ions bombarding a Ti-Al composite target. However, the chosen network structure (i.e., a multilayer perceptron) provides approximately 4 million degrees of freedom, which bears the risk of overfitting the relevant dynamics and complicating the model to an unreliable extend. This work proposes a conceptually more sophisticated but parameterwise simplified regression artificial neural network for an extended scenario, considering a variable instead of a single fixed Ti-Al stoichiometry. A convolutional \(\beta\)-variational autoencoder is trained to reduce the high-dimensional energy-angular distribution of sputtered particles to a latent space representation of only two components. In addition to a primary decoder which is trained to reconstruct the input energy-angular distribution, a secondary decoder is employed to reconstruct the mean energy of incident Ar ions as well as the present Ti-Al composition. The mutual latent space is hence conditioned on these quantities. The trained primary decoder of the variational autoencoder network is subsequently transferred to a regression network, for which only the mapping to the particular latent space has to be learned. While obtaining a competitive performance, the number of degrees of freedom is drastically reduced to 15,111 and 486 parameters for the primary decoder and the remaining regression network, respectively. The underlying methodology is general and can easily be extended to more complex physical descriptions with a minimal amount of data required.
Author Borislavov, Borislav
Trieschmann, Jan
Gergs, Tobias
Author_xml – sequence: 1
  givenname: Tobias
  surname: Gergs
  fullname: Gergs, Tobias
– sequence: 2
  givenname: Borislav
  surname: Borislavov
  fullname: Borislavov, Borislav
– sequence: 3
  givenname: Jan
  surname: Trieschmann
  fullname: Trieschmann, Jan
BookMark eNotjstKAzEUhoMoWGsfwF3A9dTkTJJmlkW8QcFN9-VMelKmTpOai_r4Dujqg5__dsMuQwzE2J0US2W1Fg-YfoavJUjRLYVUwlywGbStbKwCuGaLnI9CCDAr0LqdsboOnLwf3ECh8POI-YRNrsmjIz6EQgldGWLgk5biAQvxU9zTyH1MPJ9rmRxDOPBzio5ypsx7zLTnUwJriRTc5E48UE04TijfMX3kW3blccy0-OecbZ-fto-vzeb95e1xvWlQg2oQ_EqgNUIZ6wx1zjpURishVC-9XSnnpZO2N4BGS0QQANAJ6X3vdL_v2zm7_6ud3n1WymV3jDWFaXEH2nRWtyBV-wvnMWF0
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2109.01406
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-a2f70a860468c6e9c8ca4654004b1f874cf1c18b62a651aa20222901ffbc5bdb3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:18:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-a2f70a860468c6e9c8ca4654004b1f874cf1c18b62a651aa20222901ffbc5bdb3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2569853214?pq-origsite=%requestingapplication%
PQID 2569853214
PQPubID 2050157
ParticipantIDs proquest_journals_2569853214
PublicationCentury 2000
PublicationDate 20210906
PublicationDateYYYYMMDD 2021-09-06
PublicationDate_xml – month: 09
  year: 2021
  text: 20210906
  day: 06
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7692491
SecondaryResourceType preprint
Snippet Simulations of thin film sputter deposition require the separation of the plasma and material transport in the gas-phase from the growth/sputtering processes...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Aluminum
Angular distribution
Artificial neural networks
Degrees of freedom
Energy distribution
Lookup tables
Machine learning
Multilayer perceptrons
Neural networks
Regression
Sputtering
Stoichiometry
Thin films
Titanium
Title An efficient plasma-surface interaction surrogate model for sputtering processes based on autoencoder neural networks
URI https://www.proquest.com/docview/2569853214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6KXjyGz_myMFrtzXdkvQkKht6cBTdYZ5Gkr7AQNfarsM_35es04PgxVNpS6EkvPd7X_n9CLlOIwYmEmGAWI4JigAWaO267KmyAkSMIa71YhNiPJbTaZzUBbeyHqvc-ETvqNPMuBp5F6E5RmhhYf8m_wicapTrrtYSGtuk6VgSQj-69_JdY2FcYMQcrZuZnrqrq4rP-aqDeU7ccbkF_-WCPa6M9v_7RwekmagcikOyBYsjsuvnOU15TKrbBQXPDoGgQnMMkd9VUFaFVQaoo4go1gcaKD4rMldKo14Th2IMS8vcq1cjqNF8fY4ASurgLqX4haqWmWO_TKGgjg1TveHFz5KXJ2QyGk7uH4JaYSFQA9YPFLOipyTHHFkaDrGRRjl-NTQcHVop-saGJpSaM8UHoVLMZYcYQFirzUCnOjoljUW2gDNCpUX71aA48KivBwhyHCAKAWQvAinYOWltFnFWW0k5-1nBi79fX5I95mZJXCOHt0hjWVRwRXbMajkvizZp3g3HyXPbbz7eJY9PyesXlGO9SA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB7qCz35xrd70GOq2bS7m4OIqEVRS8Eeeiu7m1kQtI1J6-NH-R-d3Vo9CN568BRI2EAyw3zzzRPgIEs42kTGEWE5ERSJPDLGZ9kz7STKlFxcF5ZNyGZTdTppqwIf414YX1Y5tonBUGd962PkRwTNKUELj2un-XPkt0b57Op4hcZILW7w_ZUoW3lyfUHyPeS8cdk-v4q-tgpEus5rkeZOHmsliBcqKzC1ymo_U4yUxcROyZp1sY2VEVyLeqw194yIQNM5Y-smMwm9dgpmyIvgaagUvP8O6XAhyUFPRrnTMCnsSBdvDy9VolVp1VMZ8cviBxhrLP6zH7AEMy2dY7EMFeytwFyoVrXlKgzPegzD7AuCTJYTAXjSUTksnLbI_ACMYtSuwehe0feBQhY2_jDy0FmZh93cBNksH3VJYMk8mGeMTujhoO9ne2ZYMD_rUz_SJVTKl2vQnsSHrsN0r9_DDWDKkXUyqAWKpGbqBOECMYkR1XGCSvJN2BnLrPtlA8ruj8C2_n68D_NX7bvb7u1182YbFrivmvEpK7ED04NiiLswa18GD2WxF_SNQXfC4v0EP4AU8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+plasma-surface+interaction+surrogate+model+for+sputtering+processes+based+on+autoencoder+neural+networks&rft.jtitle=arXiv.org&rft.au=Gergs%2C+Tobias&rft.au=Borislavov%2C+Borislav&rft.au=Trieschmann%2C+Jan&rft.date=2021-09-06&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2109.01406