An Identity-Preserved Framework for Human Motion Transfer

Human motion transfer (HMT) aims to generate a video clip for the target subject by imitating the source subject's motion. Although previous methods have achieved good results in synthesizing good-quality videos, they lose sight of individualized motion information from the source and target mo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Ma, Jingzhe, Zhang, Xiaoqing, Yu, Shiqi
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 22.02.2024
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human motion transfer (HMT) aims to generate a video clip for the target subject by imitating the source subject's motion. Although previous methods have achieved good results in synthesizing good-quality videos, they lose sight of individualized motion information from the source and target motions, which is significant for the realism of the motion in the generated video. To address this problem, we propose a novel identity-preserved HMT network, termed \textit{IDPres}. This network is a skeleton-based approach that uniquely incorporates the target's individualized motion and skeleton information to augment identity representations. This integration significantly enhances the realism of movements in the generated videos. Our method focuses on the fine-grained disentanglement and synthesis of motion. To improve the representation learning capability in latent space and facilitate the training of \textit{IDPres}, we introduce three training schemes. These schemes enable \textit{IDPres} to concurrently disentangle different representations and accurately control them, ensuring the synthesis of ideal motions. To evaluate the proportion of individualized motion information in the generated video, we are the first to introduce a new quantitative metric called Identity Score (\textit{ID-Score}), motivated by the success of gait recognition methods in capturing identity information. Moreover, we collect an identity-motion paired dataset, \(Dancer101\), consisting of solo-dance videos of 101 subjects from the public domain, providing a benchmark to prompt the development of HMT methods. Extensive experiments demonstrate that the proposed \textit{IDPres} method surpasses existing state-of-the-art techniques in terms of reconstruction accuracy, realistic motion, and identity preservation.
AbstractList Human motion transfer (HMT) aims to generate a video clip for the target subject by imitating the source subject's motion. Although previous methods have achieved good results in synthesizing good-quality videos, they lose sight of individualized motion information from the source and target motions, which is significant for the realism of the motion in the generated video. To address this problem, we propose a novel identity-preserved HMT network, termed \textit{IDPres}. This network is a skeleton-based approach that uniquely incorporates the target's individualized motion and skeleton information to augment identity representations. This integration significantly enhances the realism of movements in the generated videos. Our method focuses on the fine-grained disentanglement and synthesis of motion. To improve the representation learning capability in latent space and facilitate the training of \textit{IDPres}, we introduce three training schemes. These schemes enable \textit{IDPres} to concurrently disentangle different representations and accurately control them, ensuring the synthesis of ideal motions. To evaluate the proportion of individualized motion information in the generated video, we are the first to introduce a new quantitative metric called Identity Score (\textit{ID-Score}), motivated by the success of gait recognition methods in capturing identity information. Moreover, we collect an identity-motion paired dataset, \(Dancer101\), consisting of solo-dance videos of 101 subjects from the public domain, providing a benchmark to prompt the development of HMT methods. Extensive experiments demonstrate that the proposed \textit{IDPres} method surpasses existing state-of-the-art techniques in terms of reconstruction accuracy, realistic motion, and identity preservation.
Author Ma, Jingzhe
Zhang, Xiaoqing
Yu, Shiqi
Author_xml – sequence: 1
  givenname: Jingzhe
  surname: Ma
  fullname: Ma, Jingzhe
– sequence: 2
  givenname: Xiaoqing
  surname: Zhang
  fullname: Zhang, Xiaoqing
– sequence: 3
  givenname: Shiqi
  surname: Yu
  fullname: Yu, Shiqi
BookMark eNotzc1KAzEUQOEgCtbaB3AXcD1jcvO_LMXaQkXB7ks6uYGpNtFkpurbK-jq7L5zRc5TTkjIDWettEqxO1---lMLwGTLtNVwRiYgBG-sBLgks1oPjDHQBpQSE-Lmia4DpqEfvpvnghXLCQNdFn_Ez1xeacyFrsajT_QxD31OdFt8qhHLNbmI_q3i7L9T8rK83y5WzebpYb2YbxqvQDbOoZbOQ-hctPvOdE7GaJR1GhgPaI02XbQ2Msv3TqAWHgOowCNqzg0XU3L7p76X_DFiHXaHPJb0O9yBVkyAYkqKH2LASVE
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2204.06862
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest One Academic
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-99e649a2dc9f8bc7c94ff75896201de8767cf88f081b93e63aed25d1fe611713
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:19:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-99e649a2dc9f8bc7c94ff75896201de8767cf88f081b93e63aed25d1fe611713
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2650325054?pq-origsite=%requestingapplication%
PQID 2650325054
PQPubID 2050157
ParticipantIDs proquest_journals_2650325054
PublicationCentury 2000
PublicationDate 20240222
PublicationDateYYYYMMDD 2024-02-22
PublicationDate_xml – month: 02
  year: 2024
  text: 20240222
  day: 22
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8612721
SecondaryResourceType preprint
Snippet Human motion transfer (HMT) aims to generate a video clip for the target subject by imitating the source subject's motion. Although previous methods have...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Coders
Gait recognition
Human motion
Realism
Synthesis
Video
Title An Identity-Preserved Framework for Human Motion Transfer
URI https://www.proquest.com/docview/2650325054
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BCxIT3-KjVB5YTRvHceIJAWoFQ6uIMpSp8qfUJZSkVPDvsY0LAxILY-Qlsq17787v7gFcSilklvctFoK5BIVphguaEGy0zayRjvFbGcwm8vG4mE55GQtuTZRVrmNiCNT6RfkaeY84KpF6vKbXi1fsXaP862q00NiEtp9URlvQvh2My8fvKgthuePM6ddzZhje1RP1-3x1RYgfcOrbI34F4YAsw93__tMetEuxMPU-bJjqALaDolM1h8BvKhS7cD-wF1p4aaNGw7UYCzm2ikIJH42Ckw8KsGVNfQST4eDp7h5HnwQsMkIx54ZRLohW3BZS5YpTa10awJkDd21cuMuVLQrrwF_y1LBUGE0ynVjDksTlqMfQql4qcwLIOsTk_Uw7FmJpLlKeKOoZhSm0pH2lTqGz3odZvOrN7GcTzv5ePocd4hhB6AcnHWgt6zdzAVtqtZw3dTeeXNeLLyfuq3wYlc-fROKmwg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTsJAFL1B0OjKd3ygdqHLCp1Op52FMUYlEB4hgQUryTwTNgULovyTH-nMQHVh4o6F6yZNO49zzp177lyAa84Zj-Kq9hkjJkAhkvgJDpCvpI604kbxa-6aTcSdTjIY0G4BPvNaGGurzDHRAbUcC3tGXkFGSoSWr_H95NW3XaNsdjVvobFcFk21eDch2_Su8WTm9wah2nP_se6vugr4LELYp1QRTBmSguqEi1hQrLURzZQYKpTKgEMsdJJoQ5WchoqETEkUyUArEgQmojNv3YASttjvjIK97xMdRGKjz8Nl6tRdFFZh2cdofouQvUzVlmL8AnzHYrXd__X_e1DqsonK9qGg0gPYcl5VMT0E-pB6q_rihW8tJNa0Kb1abjPzjA73XHLCa7seRZ4jZK2yI-it4VuPoZiOU3UCnjZagFYjafSVxjELaSCw1UoqkRxXhTiFcj7qw9Umng5_hvzs78dXsF3vt1vDVqPTPIcdZHSPq3pHZSjOsjd1AZtiPhtNs0u3Yjx4We8EfQHLKf1n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Identity-Preserved+Framework+for+Human+Motion+Transfer&rft.jtitle=arXiv.org&rft.au=Ma%2C+Jingzhe&rft.au=Zhang%2C+Xiaoqing&rft.au=Yu%2C+Shiqi&rft.date=2024-02-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2204.06862