A CSI Dataset for Wireless Human Sensing on 80 MHz Wi-Fi Channels

In the last years, several machine learning-based techniques have been proposed to monitor human movements from Wi-Fi channel readings. However, the development of domain-adaptive algorithms that robustly work across different environments is still an open problem, whose solution requires large data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Meneghello, Francesca, Nicolò Dal Fabbro, Garlisi, Domenico, Tinnirello, Ilenia, Rossi, Michele
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.04.2023
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the last years, several machine learning-based techniques have been proposed to monitor human movements from Wi-Fi channel readings. However, the development of domain-adaptive algorithms that robustly work across different environments is still an open problem, whose solution requires large datasets characterized by strong domain diversity, in terms of environments, persons and Wi-Fi hardware. To date, the few public datasets available are mostly obsolete - as obtained via Wi-Fi devices operating on 20 or 40 MHz bands - and contain little or no domain diversity, thus dramatically limiting the advancements in the design of sensing algorithms. The present contribution aims to fill this gap by providing a dataset of IEEE 802.11ac channel measurements over an 80 MHz bandwidth channel featuring notable domain diversity, through measurement campaigns that involved thirteen subjects across different environments, days, and with different hardware. Novel experimental data is provided by blocking the direct path between the transmitter and the monitor, and collecting measurements in a semi-anechoic chamber (no multi-path fading). Overall, the dataset - available on IEEE DataPort [1] - contains more than thirteen hours of channel state information readings (23.6 GB), allowing researchers to test activity/identity recognition and people counting algorithms.
AbstractList In the last years, several machine learning-based techniques have been proposed to monitor human movements from Wi-Fi channel readings. However, the development of domain-adaptive algorithms that robustly work across different environments is still an open problem, whose solution requires large datasets characterized by strong domain diversity, in terms of environments, persons and Wi-Fi hardware. To date, the few public datasets available are mostly obsolete - as obtained via Wi-Fi devices operating on 20 or 40 MHz bands - and contain little or no domain diversity, thus dramatically limiting the advancements in the design of sensing algorithms. The present contribution aims to fill this gap by providing a dataset of IEEE 802.11ac channel measurements over an 80 MHz bandwidth channel featuring notable domain diversity, through measurement campaigns that involved thirteen subjects across different environments, days, and with different hardware. Novel experimental data is provided by blocking the direct path between the transmitter and the monitor, and collecting measurements in a semi-anechoic chamber (no multi-path fading). Overall, the dataset - available on IEEE DataPort [1] - contains more than thirteen hours of channel state information readings (23.6 GB), allowing researchers to test activity/identity recognition and people counting algorithms.
Author Nicolò Dal Fabbro
Rossi, Michele
Garlisi, Domenico
Meneghello, Francesca
Tinnirello, Ilenia
Author_xml – sequence: 1
  givenname: Francesca
  surname: Meneghello
  fullname: Meneghello, Francesca
– sequence: 2
  fullname: Nicolò Dal Fabbro
– sequence: 3
  givenname: Domenico
  surname: Garlisi
  fullname: Garlisi, Domenico
– sequence: 4
  givenname: Ilenia
  surname: Tinnirello
  fullname: Tinnirello, Ilenia
– sequence: 5
  givenname: Michele
  surname: Rossi
  fullname: Rossi, Michele
BookMark eNotjU1Lw0AUABdRsNb-AG8LnhPfvv3MMURrChUPLXgsL8lGU-JGs4mIv96CnuYyzFyx8zAEz9iNgFQ5reGOxu_uK0UJOgUpLJyxBUopEqcQL9kqxiMAoLGotVywPOfFbsPvaaLoJ94OI3_pRt_7GHk5v1PgOx9iF175ELgD_lT-nIRk3fHijULwfbxmFy310a_-uWT79cO-KJPt8-OmyLcJaVRJBk0NqkaqnNHKVy2SzxrrbKV0Y-oaDBmnBTl0kNUklBVoMjKirQCFruSS3f5lP8bhc_ZxOhyHeQyn4wGdEGBBWyV_AbqtSdI
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2305.03170
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-90dc04c2ab8654ebf2ae9d787b45d6cc06a6851a82809ca1471269a61fb0215b3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:22:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-90dc04c2ab8654ebf2ae9d787b45d6cc06a6851a82809ca1471269a61fb0215b3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2811070574?pq-origsite=%requestingapplication%
PQID 2811070574
PQPubID 2050157
ParticipantIDs proquest_journals_2811070574
PublicationCentury 2000
PublicationDate 20230429
PublicationDateYYYYMMDD 2023-04-29
PublicationDate_xml – month: 04
  year: 2023
  text: 20230429
  day: 29
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.830128
SecondaryResourceType preprint
Snippet In the last years, several machine learning-based techniques have been proposed to monitor human movements from Wi-Fi channel readings. However, the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Activity recognition
Adaptive algorithms
Algorithms
Anechoic chambers
Datasets
Domains
Hardware
Human motion
Machine learning
Title A CSI Dataset for Wireless Human Sensing on 80 MHz Wi-Fi Channels
URI https://www.proquest.com/docview/2811070574
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgBYmJt3iUygOrqeMkTjKhUqjaoVVEO5SpunEcVAmlJQkV4uu5NikMSCyMUTLYjnPOfZz4EHINYeJoCDnTUmTMkxpxMBIB4xnSuUoxI4HQmk0E43E4m0VxXXAra1nlBhMtUKdLZWrkHRGaTAWjC-929cqMa5TprtYWGtukaU5JcKx0b_JdYxEywIjZ_Wpm2qO7OlC8L9ZG_ezf4HYO-C8ItrzS3__viA5IM4aVLg7Jls6PyK7Vc6rymHS7tDcZ0nuokKUqipEpNTrXF8Q1auv2dGKU6_kzXeY05HQ0-MAHWH9Bze8GORLmCZn2H6a9AavdEhj4wmMRTxX3lIAklL6nk0yAjlL8HBPPT6VSXILE6Aoww-KRAgdJScgIpJMlhvYT95Q08mWuzwgNAkghlYmrcG7I-BAo6Tlp4IoMwoi756S1WZB5vePL-c9qXPx9-5LsGct205ERUYs0quJNX5Edta4WZdEmzbuHcfzYti8Sr-LhKH76BJ02pWM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED4VCoKJt3jjAcZQ10mceEAIUapWhapSO3SLLo6DKqEUmvD8T_xHzimFAYmNgTlWZJ3P333n--wDOMYwrhsMuWOkSB1PGsJBJQKHpxTOdUIZCYZls4mg2w2HQ9WrwPvsLoyVVc4wsQTqZKztGXlNhDZTIXbhnd8_OLZrlK2uzlpoTN2iY16fKWXLz9oNWt8TIZpXg8uW89lVwEFfeI7iieaeFhiH0vdMnAo0KiG3jT0_kVpziZJYCFImwpXGOoG3kAplPY1teIxd-u0cVIlFCFUqBftfRzpCBkTQ3WnttHwprIaTl9GTFVv7p7R7Av4D8csw1lz5ZwZYhWoP781kDSomW4fFUq2q8w24uGCX_TZrYEExuGDEu5lV8d4RarOyKsH6Vpef3bJxxkLOblpvNMBpjpi9TJERHdiEwV9Megvms3FmtoEFASaYyNjVZEriMxho6dWTwBUphoq7O7A_s3_0uZ_z6Nv4u79_PoKl1uDmOrpudzt7sGyb09vak1D7MF9MHs0BLOinYpRPDkvfYRD98VJ9AIZD_J4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CSI+Dataset+for+Wireless+Human+Sensing+on+80+MHz+Wi-Fi+Channels&rft.jtitle=arXiv.org&rft.au=Meneghello%2C+Francesca&rft.au=Nicol%C3%B2+Dal+Fabbro&rft.au=Garlisi%2C+Domenico&rft.au=Tinnirello%2C+Ilenia&rft.date=2023-04-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2305.03170