Approximation Fixpoint Theory and the Well-Founded Semantics of Higher-Order Logic Programs
We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of the source language as three-valued Fitting-monotonic functions at all levels of the type hierarchy. We prove that there exists a bijection be...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
23.04.2018
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of the source language as three-valued Fitting-monotonic functions at all levels of the type hierarchy. We prove that there exists a bijection between such Fitting-monotonic functions and pairs of two-valued-result functions where the first member of the pair is monotone-antimonotone and the second member is antimonotone-monotone. By deriving an extension of consistent approximation fixpoint theory (Denecker et al. 2004) and utilizing the above bijection, we define an iterative procedure that produces for any given higher-order logic program a distinguished extensional model. We demonstrate that this model is actually a minimal one. Moreover, we prove that our construction generalizes the familiar well-founded semantics for classical logic programs, making in this way our proposal an appealing formulation for capturing the well-founded semantics for higher-order logic programs. This paper is under consideration for acceptance in TPLP. |
|---|---|
| AbstractList | We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of the source language as three-valued Fitting-monotonic functions at all levels of the type hierarchy. We prove that there exists a bijection between such Fitting-monotonic functions and pairs of two-valued-result functions where the first member of the pair is monotone-antimonotone and the second member is antimonotone-monotone. By deriving an extension of consistent approximation fixpoint theory (Denecker et al. 2004) and utilizing the above bijection, we define an iterative procedure that produces for any given higher-order logic program a distinguished extensional model. We demonstrate that this model is actually a minimal one. Moreover, we prove that our construction generalizes the familiar well-founded semantics for classical logic programs, making in this way our proposal an appealing formulation for capturing the well-founded semantics for higher-order logic programs. This paper is under consideration for acceptance in TPLP. |
| Author | Symeonidou, Ioanna Charalambidis, Angelos Rondogiannis, Panos |
| Author_xml | – sequence: 1 givenname: Angelos surname: Charalambidis fullname: Charalambidis, Angelos – sequence: 2 givenname: Panos surname: Rondogiannis fullname: Rondogiannis, Panos – sequence: 3 givenname: Ioanna surname: Symeonidou fullname: Symeonidou, Ioanna |
| BookMark | eNotj0tLxDAYRYMoOI7zA9wFXLd-efWxHAbrCIURLLhwMaRN2mZok5q2Uv-9BYXLPbt7uHfo2jqrEXogEPJECHiSfjHfIUmAh5AwJq7QhjJGgoRTeot243gBABrFVAi2QZ_7YfBuMb2cjLM4M8vgjJ1w0Wrnf7C0Ck-txh-664LMzVZphd91L-1kqhG7Gh9N02ofnLzSHueuMRV-867xsh_v0U0tu1Hv_rlFRfZcHI5Bfnp5PezzQArKg4RFNeWQAmd1xSQoVUYMKgGEJLKqUp4qpdNaCBpJrlW6FiEEaF2qlPBSsS16_Jtdj3zNepzOFzd7uxrPFOI1MRec_QISElYw |
| ContentType | Paper |
| Copyright | 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1804.08335 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a524-836f2409043fc3a0ddb630c50118acc949dde9f5526a4ed9a4e11102fbd914bd3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:42:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a524-836f2409043fc3a0ddb630c50118acc949dde9f5526a4ed9a4e11102fbd914bd3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2072077454?pq-origsite=%requestingapplication% |
| PQID | 2072077454 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2072077454 |
| PublicationCentury | 2000 |
| PublicationDate | 20180423 |
| PublicationDateYYYYMMDD | 2018-04-23 |
| PublicationDate_xml | – month: 04 year: 2018 text: 20180423 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2018 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.6525161 |
| SecondaryResourceType | preprint |
| Snippet | We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Approximation Graphs Iterative methods Logic programming Logic programs Mathematical analysis Mathematical models Semantics |
| Title | Approximation Fixpoint Theory and the Well-Founded Semantics of Higher-Order Logic Programs |
| URI | https://www.proquest.com/docview/2072077454 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA66Kfjkb_wxRx58jbZN2iZPorKhoLO4gRMfRtIkUJjtbOfYn2-Sdvog-CKUQimFckfuPu6--w6Ac4mZZDpSSMV2JIf4EgmuBBIm92gqqU-E8_RDPBjQ8ZglTcGtamiVq5joArUsUlsjt5UQc8UkJFezD2S3RtnuarNCYx20rUqC76h7w-8aSxDFBjHjupnppLsuebnMFhc-tfKmdt7oVwh2eaW__d8_2gHthM9UuQvWVL4HNh2fM632wdu11QpfZvVgIuxny1mR5XNYj-JDnktokB98UdMpcpuVlIRD9W7MbD6HhYY1_wM9WWVOaBcypzCpqVzVARj1e6PbO9TsUUA8DAiiONImbzOPYJ1i7kkpIuyloZ055WnKCDMhjukwDCJOlGTmZgKgF2ghmXGVxIeglRe5OgIw5j42kEIJA1uIp4Ww2js-1rZ9ST1Gj0FnZapJcxaqyY-dTv5-fQq2DByhtlcT4A5ozctPdQY20sU8q8ouaN_0Bslz17nYPCX3j8nrF34osZc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58oiff-Ki6Bz2uJtnNYw8iohbFWgsWFDyU3ewuBDStTa31R_kfnU2sHgRvHoSQS0jIZmZnvszjG4A9zYQWNjLUxK4lh_uaKmkUVeh7bKITn6tS0o242Uzu70VrAt7HvTCurHJsE0tDrbupi5G7SAgeMQ_5ce-ZuqlRLrs6HqFRqcWVeXvFX7bi6PIM5bsfBPXz9ukF_ZwqQGUYcJqwyKIXEx5nNmXS01pFzEtD14Ep01RwgRte2DAMIsmNFnhCc-AFVmmBL64ZPnYSpnFVgVdWCt5-hXSCKEaAzqrcackUdij7o2x44CeOTdW1N_2w-KUbqy_8sw-wCNMt2TP9JZgw-TLMltWqabECDyeOCX2UVW2XpJ6Net0sH5CKaIDIXBPEteTOPD7Scm6U0eTWPKES4e2ka0lV3UJvHO8oceOmU9KqCtWKVWj_xXLWYCrv5mYdSCx9hoDJKARl3LNKOWYhn1mXnE08kWxAbSyZzudOLzrfYtn8_fIuzF20rxudxmXzagvmEXglLisVsBpMDfovZhtm0uEgK_o7pVYR6PyxED8A8kQJ3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+Fixpoint+Theory+and+the+Well-Founded+Semantics+of+Higher-Order+Logic+Programs&rft.jtitle=arXiv.org&rft.au=Charalambidis%2C+Angelos&rft.au=Rondogiannis%2C+Panos&rft.au=Symeonidou%2C+Ioanna&rft.date=2018-04-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1804.08335 |