Approximation Fixpoint Theory and the Well-Founded Semantics of Higher-Order Logic Programs

We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of the source language as three-valued Fitting-monotonic functions at all levels of the type hierarchy. We prove that there exists a bijection be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Charalambidis, Angelos, Rondogiannis, Panos, Symeonidou, Ioanna
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 23.04.2018
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of the source language as three-valued Fitting-monotonic functions at all levels of the type hierarchy. We prove that there exists a bijection between such Fitting-monotonic functions and pairs of two-valued-result functions where the first member of the pair is monotone-antimonotone and the second member is antimonotone-monotone. By deriving an extension of consistent approximation fixpoint theory (Denecker et al. 2004) and utilizing the above bijection, we define an iterative procedure that produces for any given higher-order logic program a distinguished extensional model. We demonstrate that this model is actually a minimal one. Moreover, we prove that our construction generalizes the familiar well-founded semantics for classical logic programs, making in this way our proposal an appealing formulation for capturing the well-founded semantics for higher-order logic programs. This paper is under consideration for acceptance in TPLP.
AbstractList We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of the source language as three-valued Fitting-monotonic functions at all levels of the type hierarchy. We prove that there exists a bijection between such Fitting-monotonic functions and pairs of two-valued-result functions where the first member of the pair is monotone-antimonotone and the second member is antimonotone-monotone. By deriving an extension of consistent approximation fixpoint theory (Denecker et al. 2004) and utilizing the above bijection, we define an iterative procedure that produces for any given higher-order logic program a distinguished extensional model. We demonstrate that this model is actually a minimal one. Moreover, we prove that our construction generalizes the familiar well-founded semantics for classical logic programs, making in this way our proposal an appealing formulation for capturing the well-founded semantics for higher-order logic programs. This paper is under consideration for acceptance in TPLP.
Author Symeonidou, Ioanna
Charalambidis, Angelos
Rondogiannis, Panos
Author_xml – sequence: 1
  givenname: Angelos
  surname: Charalambidis
  fullname: Charalambidis, Angelos
– sequence: 2
  givenname: Panos
  surname: Rondogiannis
  fullname: Rondogiannis, Panos
– sequence: 3
  givenname: Ioanna
  surname: Symeonidou
  fullname: Symeonidou, Ioanna
BookMark eNotj0tLxDAYRYMoOI7zA9wFXLd-efWxHAbrCIURLLhwMaRN2mZok5q2Uv-9BYXLPbt7uHfo2jqrEXogEPJECHiSfjHfIUmAh5AwJq7QhjJGgoRTeot243gBABrFVAi2QZ_7YfBuMb2cjLM4M8vgjJ1w0Wrnf7C0Ck-txh-664LMzVZphd91L-1kqhG7Gh9N02ofnLzSHueuMRV-867xsh_v0U0tu1Hv_rlFRfZcHI5Bfnp5PezzQArKg4RFNeWQAmd1xSQoVUYMKgGEJLKqUp4qpdNaCBpJrlW6FiEEaF2qlPBSsS16_Jtdj3zNepzOFzd7uxrPFOI1MRec_QISElYw
ContentType Paper
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1804.08335
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-836f2409043fc3a0ddb630c50118acc949dde9f5526a4ed9a4e11102fbd914bd3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:42:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-836f2409043fc3a0ddb630c50118acc949dde9f5526a4ed9a4e11102fbd914bd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2072077454?pq-origsite=%requestingapplication%
PQID 2072077454
PQPubID 2050157
ParticipantIDs proquest_journals_2072077454
PublicationCentury 2000
PublicationDate 20180423
PublicationDateYYYYMMDD 2018-04-23
PublicationDate_xml – month: 04
  year: 2018
  text: 20180423
  day: 23
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6525161
SecondaryResourceType preprint
Snippet We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Approximation
Graphs
Iterative methods
Logic programming
Logic programs
Mathematical analysis
Mathematical models
Semantics
Title Approximation Fixpoint Theory and the Well-Founded Semantics of Higher-Order Logic Programs
URI https://www.proquest.com/docview/2072077454
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA66Kfjkb_wxRx58jbZN2iZPorKhoLO4gRMfRtIkUJjtbOfYn2-Sdvog-CKUQimFckfuPu6--w6Ac4mZZDpSSMV2JIf4EgmuBBIm92gqqU-E8_RDPBjQ8ZglTcGtamiVq5joArUsUlsjt5UQc8UkJFezD2S3RtnuarNCYx20rUqC76h7w-8aSxDFBjHjupnppLsuebnMFhc-tfKmdt7oVwh2eaW__d8_2gHthM9UuQvWVL4HNh2fM632wdu11QpfZvVgIuxny1mR5XNYj-JDnktokB98UdMpcpuVlIRD9W7MbD6HhYY1_wM9WWVOaBcypzCpqVzVARj1e6PbO9TsUUA8DAiiONImbzOPYJ1i7kkpIuyloZ055WnKCDMhjukwDCJOlGTmZgKgF2ghmXGVxIeglRe5OgIw5j42kEIJA1uIp4Ww2js-1rZ9ST1Gj0FnZapJcxaqyY-dTv5-fQq2DByhtlcT4A5ozctPdQY20sU8q8ouaN_0Bslz17nYPCX3j8nrF34osZc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58oiff-Ki6Bz2uJtnNYw8iohbFWgsWFDyU3ewuBDStTa31R_kfnU2sHgRvHoSQS0jIZmZnvszjG4A9zYQWNjLUxK4lh_uaKmkUVeh7bKITn6tS0o242Uzu70VrAt7HvTCurHJsE0tDrbupi5G7SAgeMQ_5ce-ZuqlRLrs6HqFRqcWVeXvFX7bi6PIM5bsfBPXz9ukF_ZwqQGUYcJqwyKIXEx5nNmXS01pFzEtD14Ep01RwgRte2DAMIsmNFnhCc-AFVmmBL64ZPnYSpnFVgVdWCt5-hXSCKEaAzqrcackUdij7o2x44CeOTdW1N_2w-KUbqy_8sw-wCNMt2TP9JZgw-TLMltWqabECDyeOCX2UVW2XpJ6Net0sH5CKaIDIXBPEteTOPD7Scm6U0eTWPKES4e2ka0lV3UJvHO8oceOmU9KqCtWKVWj_xXLWYCrv5mYdSCx9hoDJKARl3LNKOWYhn1mXnE08kWxAbSyZzudOLzrfYtn8_fIuzF20rxudxmXzagvmEXglLisVsBpMDfovZhtm0uEgK_o7pVYR6PyxED8A8kQJ3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+Fixpoint+Theory+and+the+Well-Founded+Semantics+of+Higher-Order+Logic+Programs&rft.jtitle=arXiv.org&rft.au=Charalambidis%2C+Angelos&rft.au=Rondogiannis%2C+Panos&rft.au=Symeonidou%2C+Ioanna&rft.date=2018-04-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1804.08335