A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo vision

In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo matching. Our method can generate dense disparity maps from disparity measurements of only 18% pixels of either the left or the right image of a ste...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Mukherjee, Subhayan, Ram Mohana Reddy Guddeti
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 20.01.2020
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo matching. Our method can generate dense disparity maps from disparity measurements of only 18% pixels of either the left or the right image of a stereo image pair. It works by segmenting the lightness values of image pixels using a fast implementation of K-Means clustering. It then refines those segment boundaries by morphological filtering and connected components analysis, thus removing a lot of redundant boundary pixels. This is followed by determining the boundaries' disparities by the SAD cost function. Lastly, we reconstruct the entire disparity map of the scene from the boundaries' disparities through disparity propagation along the scan lines and disparity prediction of regions of uncertainty by considering disparities of the neighboring regions. Experimental results on the Middlebury stereo vision dataset demonstrate that the proposed method outperforms traditional disparity determination methods like SAD and NCC by up to 30% and achieves an improvement of 2.6% when compared to a recent approach based on absolute difference (AD) cost function for disparity calculations [1].
AbstractList In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo matching. Our method can generate dense disparity maps from disparity measurements of only 18% pixels of either the left or the right image of a stereo image pair. It works by segmenting the lightness values of image pixels using a fast implementation of K-Means clustering. It then refines those segment boundaries by morphological filtering and connected components analysis, thus removing a lot of redundant boundary pixels. This is followed by determining the boundaries' disparities by the SAD cost function. Lastly, we reconstruct the entire disparity map of the scene from the boundaries' disparities through disparity propagation along the scan lines and disparity prediction of regions of uncertainty by considering disparities of the neighboring regions. Experimental results on the Middlebury stereo vision dataset demonstrate that the proposed method outperforms traditional disparity determination methods like SAD and NCC by up to 30% and achieves an improvement of 2.6% when compared to a recent approach based on absolute difference (AD) cost function for disparity calculations [1].
Author Ram Mohana Reddy Guddeti
Mukherjee, Subhayan
Author_xml – sequence: 1
  givenname: Subhayan
  surname: Mukherjee
  fullname: Mukherjee, Subhayan
– sequence: 2
  fullname: Ram Mohana Reddy Guddeti
BookMark eNpNjsFOwzAQRC0EEqX0A7hZ4pyyttdJeqwqoEiVuPRe2cmaukrjYicV_XuM4MBpNJo3u3PHrvvQE2MPAuZYaw1PJn7581wCiDmUi7K6YhOplChqlPKWzVI6AIAsK6m1mrBmyfcXG33LTfcRoh_2R-5C5K1PJ5PthTema8bODD703MVw5D9Bon8EpcEfzUCJW5Oo5RlMA0UK_OxTrt2zG2e6RLM_nbLty_N2tS42769vq-WmMFpigRWBk8raBZYOiAwpIzTWlpyrwApC2dZCQtVAJiySsJnCplR2IYBaNWWPv2dPMXyOedTuEMbY5487qVAprTWi-gYswFq5
ContentType Paper
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2001.06967
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-47e0f23bb946f0eeae3a1548beff70b1e42d81207c0946b4e1b0ee4c63b910ed3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:31:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-47e0f23bb946f0eeae3a1548beff70b1e42d81207c0946b4e1b0ee4c63b910ed3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2343355544?pq-origsite=%requestingapplication%
PQID 2343355544
PQPubID 2050157
ParticipantIDs proquest_journals_2343355544
PublicationCentury 2000
PublicationDate 20200120
PublicationDateYYYYMMDD 2020-01-20
PublicationDate_xml – month: 01
  year: 2020
  text: 20200120
  day: 20
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.711642
SecondaryResourceType preprint
Snippet In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Boundaries
Cluster analysis
Clustering
Cost function
Mathematical analysis
Pixels
Vector quantization
Vision
Title A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo vision
URI https://www.proquest.com/docview/2343355544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gA4kTb_EYUw5cy9okTdsTAjQEB6YKdhinKa-ySexBOyb277G7jseFC8cqrlTFjf3Zsf0Rcm4dBAFaKk8bFnlCWuXFmoVezBWAB1C6lqYkm4g6nbjXS9Iq4VZUZZUrm1gaajsxmCNvMS44-MZQiMvpm4esUXi7WlForJM6TiqD_7x-3e6kj19ZFiYjwMx8eZ1ZDu9qqfxjOMfAMLjwZbLkl_9lhEvPcrv932_aIfVUTV2-S9bceI9slhWdptgn5ooOFtiORdXrC7w0G4woAFRqhwUSD84WFLRjKvIuil0mFBcK90MCJ3CMEIxSdHaWgiDOVXATumxJPyDd23b35s6rGBU8FTLhicj5GeNaJ0JmvnPKcYUhi3ZZFvk6cIJZcPh-ZCDok1q4QIOUMJJrQBXO8kNSG0_G7ojQgKlYJpmOlDNCGZvYkIvICJwvDx7fHJPGasv61ako-t_7dfL38inZYhjX-gGc4gapzfJ3d0Y2zHw2LPJmpeQm1mk-wVN6_5A-fwKAQbc3
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07TwMxDLZKAcHEW7zJAOPBXZLmegNCiIdaAVWHDmWq8vBBJWihVx79UfxHnGvLY2HrwBwrusQ--3MS-wPYd0hJgFE6MJbHgVROB2XDS0FZaAIPpHSjbE42Eddq5WYzqRfgY1wL459Vjn1i7qhd1_oz8iMupKDYWJLy5Ok58KxR_nZ1TKExNIsrHLxRypYdV89JvwecX140zirBiFUg0CUuAxljmHJhTCJVGiJqFNrDdoNpGocmQskdBb0wtpT4KCMxMiQlrRKGIis6QdNOwbQkWw-LMF2v3tRvvw51uIoJoovh7WneK-xI997brz4PjQ5DlQzp7H_5_DyQXS78sy1YpKXrJ-wtQQE7yzCbv1e12QrYU3Y_8MVmTD_c0Tf27x8ZwW_m2pmnVewPGNmeHVGTMV9Dw_xAhj8kfH-RRw-1mQ_ljpGg7xqBXTYsuF-FxiSWtQbFTreD68AirssqSU2s0UptXeJKQsZW-u75hGfsBmyPNdQa_fNZ61s9m38P78FcpXFz3bqu1q62YJ77DD6MyF9tQ7Hfe8EdmLGv_XbW2x3ZF4PWhNX5Ca10EWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+algorithm+for+disparity+calculation+from+sparse+disparity+estimates+based+on+stereo+vision&rft.jtitle=arXiv.org&rft.au=Mukherjee%2C+Subhayan&rft.au=Ram+Mohana+Reddy+Guddeti&rft.date=2020-01-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2001.06967