A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo vision
In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo matching. Our method can generate dense disparity maps from disparity measurements of only 18% pixels of either the left or the right image of a ste...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
20.01.2020
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo matching. Our method can generate dense disparity maps from disparity measurements of only 18% pixels of either the left or the right image of a stereo image pair. It works by segmenting the lightness values of image pixels using a fast implementation of K-Means clustering. It then refines those segment boundaries by morphological filtering and connected components analysis, thus removing a lot of redundant boundary pixels. This is followed by determining the boundaries' disparities by the SAD cost function. Lastly, we reconstruct the entire disparity map of the scene from the boundaries' disparities through disparity propagation along the scan lines and disparity prediction of regions of uncertainty by considering disparities of the neighboring regions. Experimental results on the Middlebury stereo vision dataset demonstrate that the proposed method outperforms traditional disparity determination methods like SAD and NCC by up to 30% and achieves an improvement of 2.6% when compared to a recent approach based on absolute difference (AD) cost function for disparity calculations [1]. |
|---|---|
| AbstractList | In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo matching. Our method can generate dense disparity maps from disparity measurements of only 18% pixels of either the left or the right image of a stereo image pair. It works by segmenting the lightness values of image pixels using a fast implementation of K-Means clustering. It then refines those segment boundaries by morphological filtering and connected components analysis, thus removing a lot of redundant boundary pixels. This is followed by determining the boundaries' disparities by the SAD cost function. Lastly, we reconstruct the entire disparity map of the scene from the boundaries' disparities through disparity propagation along the scan lines and disparity prediction of regions of uncertainty by considering disparities of the neighboring regions. Experimental results on the Middlebury stereo vision dataset demonstrate that the proposed method outperforms traditional disparity determination methods like SAD and NCC by up to 30% and achieves an improvement of 2.6% when compared to a recent approach based on absolute difference (AD) cost function for disparity calculations [1]. |
| Author | Ram Mohana Reddy Guddeti Mukherjee, Subhayan |
| Author_xml | – sequence: 1 givenname: Subhayan surname: Mukherjee fullname: Mukherjee, Subhayan – sequence: 2 fullname: Ram Mohana Reddy Guddeti |
| BookMark | eNpNjsFOwzAQRC0EEqX0A7hZ4pyyttdJeqwqoEiVuPRe2cmaukrjYicV_XuM4MBpNJo3u3PHrvvQE2MPAuZYaw1PJn7581wCiDmUi7K6YhOplChqlPKWzVI6AIAsK6m1mrBmyfcXG33LTfcRoh_2R-5C5K1PJ5PthTema8bODD703MVw5D9Bon8EpcEfzUCJW5Oo5RlMA0UK_OxTrt2zG2e6RLM_nbLty_N2tS42769vq-WmMFpigRWBk8raBZYOiAwpIzTWlpyrwApC2dZCQtVAJiySsJnCplR2IYBaNWWPv2dPMXyOedTuEMbY5487qVAprTWi-gYswFq5 |
| ContentType | Paper |
| Copyright | 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2001.06967 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a524-47e0f23bb946f0eeae3a1548beff70b1e42d81207c0946b4e1b0ee4c63b910ed3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:31:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a524-47e0f23bb946f0eeae3a1548beff70b1e42d81207c0946b4e1b0ee4c63b910ed3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2343355544?pq-origsite=%requestingapplication% |
| PQID | 2343355544 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2343355544 |
| PublicationCentury | 2000 |
| PublicationDate | 20200120 |
| PublicationDateYYYYMMDD | 2020-01-20 |
| PublicationDate_xml | – month: 01 year: 2020 text: 20200120 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2020 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.711642 |
| SecondaryResourceType | preprint |
| Snippet | In this paper, we have proposed a novel method for stereo disparity estimation by combining the existing methods of block based and region based stereo... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Boundaries Cluster analysis Clustering Cost function Mathematical analysis Pixels Vector quantization Vision |
| Title | A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo vision |
| URI | https://www.proquest.com/docview/2343355544 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gA4kTb_EYUw5cy9okTdsTAjQEB6YKdhinKa-ySexBOyb277G7jseFC8cqrlTFjf3Zsf0Rcm4dBAFaKk8bFnlCWuXFmoVezBWAB1C6lqYkm4g6nbjXS9Iq4VZUZZUrm1gaajsxmCNvMS44-MZQiMvpm4esUXi7WlForJM6TiqD_7x-3e6kj19ZFiYjwMx8eZ1ZDu9qqfxjOMfAMLjwZbLkl_9lhEvPcrv932_aIfVUTV2-S9bceI9slhWdptgn5ooOFtiORdXrC7w0G4woAFRqhwUSD84WFLRjKvIuil0mFBcK90MCJ3CMEIxSdHaWgiDOVXATumxJPyDd23b35s6rGBU8FTLhicj5GeNaJ0JmvnPKcYUhi3ZZFvk6cIJZcPh-ZCDok1q4QIOUMJJrQBXO8kNSG0_G7ojQgKlYJpmOlDNCGZvYkIvICJwvDx7fHJPGasv61ako-t_7dfL38inZYhjX-gGc4gapzfJ3d0Y2zHw2LPJmpeQm1mk-wVN6_5A-fwKAQbc3 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07TwMxDLZKAcHEW7zJAOPBXZLmegNCiIdaAVWHDmWq8vBBJWihVx79UfxHnGvLY2HrwBwrusQ--3MS-wPYd0hJgFE6MJbHgVROB2XDS0FZaAIPpHSjbE42Eddq5WYzqRfgY1wL459Vjn1i7qhd1_oz8iMupKDYWJLy5Ok58KxR_nZ1TKExNIsrHLxRypYdV89JvwecX140zirBiFUg0CUuAxljmHJhTCJVGiJqFNrDdoNpGocmQskdBb0wtpT4KCMxMiQlrRKGIis6QdNOwbQkWw-LMF2v3tRvvw51uIoJoovh7WneK-xI997brz4PjQ5DlQzp7H_5_DyQXS78sy1YpKXrJ-wtQQE7yzCbv1e12QrYU3Y_8MVmTD_c0Tf27x8ZwW_m2pmnVewPGNmeHVGTMV9Dw_xAhj8kfH-RRw-1mQ_ljpGg7xqBXTYsuF-FxiSWtQbFTreD68AirssqSU2s0UptXeJKQsZW-u75hGfsBmyPNdQa_fNZ61s9m38P78FcpXFz3bqu1q62YJ77DD6MyF9tQ7Hfe8EdmLGv_XbW2x3ZF4PWhNX5Ca10EWo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+algorithm+for+disparity+calculation+from+sparse+disparity+estimates+based+on+stereo+vision&rft.jtitle=arXiv.org&rft.au=Mukherjee%2C+Subhayan&rft.au=Ram+Mohana+Reddy+Guddeti&rft.date=2020-01-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2001.06967 |