Parabolic optimal control problems with combinatorial switching constraints -- Part II: Outer approximation algorithm

We consider optimal control problems for partial differential equations where the controls take binary values but vary over the time horizon, they can thus be seen as dynamic switches. The switching patterns may be subject to combinatorial constraints such as, e.g., an upper bound on the total numbe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Buchheim, Christoph, Grütering, Alexandra, Meyer, Christian
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 22.12.2023
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider optimal control problems for partial differential equations where the controls take binary values but vary over the time horizon, they can thus be seen as dynamic switches. The switching patterns may be subject to combinatorial constraints such as, e.g., an upper bound on the total number of switchings or a lower bound on the time between two switchings. In a companion paper [arXiv:2203.07121], we describe the \(L^p\)-closure of the convex hull of feasible switching patterns as intersection of convex sets derived from finite-dimensional projections. In this paper, the resulting outer description is used for the construction of an outer approximation algorithm in function space, whose iterates are proven to converge strongly in \(L^2\) to the global minimizer of the convexified optimal control problem. The linear-quadratic subproblems arising in each iteration of the outer approximation algorithm are solved by means of a semi-smooth Newton method. A numerical example in two spatial dimensions illustrates the efficiency of the overall algorithm.
AbstractList We consider optimal control problems for partial differential equations where the controls take binary values but vary over the time horizon, they can thus be seen as dynamic switches. The switching patterns may be subject to combinatorial constraints such as, e.g., an upper bound on the total number of switchings or a lower bound on the time between two switchings. In a companion paper [arXiv:2203.07121], we describe the \(L^p\)-closure of the convex hull of feasible switching patterns as intersection of convex sets derived from finite-dimensional projections. In this paper, the resulting outer description is used for the construction of an outer approximation algorithm in function space, whose iterates are proven to converge strongly in \(L^2\) to the global minimizer of the convexified optimal control problem. The linear-quadratic subproblems arising in each iteration of the outer approximation algorithm are solved by means of a semi-smooth Newton method. A numerical example in two spatial dimensions illustrates the efficiency of the overall algorithm.
Author Grütering, Alexandra
Buchheim, Christoph
Meyer, Christian
Author_xml – sequence: 1
  givenname: Christoph
  surname: Buchheim
  fullname: Buchheim, Christoph
– sequence: 2
  givenname: Alexandra
  surname: Grütering
  fullname: Grütering, Alexandra
– sequence: 3
  givenname: Christian
  surname: Meyer
  fullname: Meyer, Christian
BookMark eNotjkFLAzEUhIMoWGt_gLeA560v2WR3602K1kKhHnovL7tJm7Kb1CSr_flG9DQwzHwzd-TaeacJeWAwF42U8IThYr_mnIOYQw3QXJEJL0tWNILzWzKL8QQAvKq5lOWEjB8YUPnettSfkx2wp613KfienoNXvR4i_bbpmN1BWYfJB5szMXvt0brDbzqmgNalSIuCZlyi6_Uz3Y5JB4rnTLlkbLLeUewPuZ6Owz25MdhHPfvXKdm9ve6W78Vmu1ovXzYFSi6Ksu0AWtAGKsG0UQI1Gq6rhWKiMl3N6rZRCnDRSTSLBlqmu44rIxuGrDNQTsnjHzaf-Bx1TPuTH4PLi3teSSi55FKUP_IjYjE
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2204.07008
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-3cd00c0ef0641efb4aeaf2e69b146fd717c8bb0a9d5af980c1edd2bf581a1df03
IEDL.DBID M7S
IngestDate Mon Jun 30 09:25:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-3cd00c0ef0641efb4aeaf2e69b146fd717c8bb0a9d5af980c1edd2bf581a1df03
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2650325254?pq-origsite=%requestingapplication%
PQID 2650325254
PQPubID 2050157
ParticipantIDs proquest_journals_2650325254
PublicationCentury 2000
PublicationDate 20231222
PublicationDateYYYYMMDD 2023-12-22
PublicationDate_xml – month: 12
  year: 2023
  text: 20231222
  day: 22
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8546402
SecondaryResourceType preprint
Snippet We consider optimal control problems for partial differential equations where the controls take binary values but vary over the time horizon, they can thus be...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Approximation
Combinatorial analysis
Companion stars
Computational geometry
Convexity
Function space
Iterative methods
Lower bounds
Mathematical analysis
Newton methods
Optimal control
Partial differential equations
Switches
Switching
Upper bounds
Title Parabolic optimal control problems with combinatorial switching constraints -- Part II: Outer approximation algorithm
URI https://www.proquest.com/docview/2650325254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLagBYmJWxyl8sBq6ri5zIIEakUHSgQdylQ5PiBSL5K06s_n2U1hQGJhjHMo8ku-d_jz-xC65iJUtvMTAddqiB8wQbiJJNGAltITMgilcGITUb8fD4c8qQpuRUWr3GCiA2o1k7ZG3mIQSrRZAPnM3fyTWNUou7paSWhso7rtkuA56t7rd42FhRFEzO31YqZr3dUS-Spb3jBm25tGlMa_INj5le7-f9_oANUTMdf5IdrS0yO06_icsjhGi0TkYN5xJvEMQGEixrgipeNKQqbAtgQLoxPIjW3mDR8iLmDMkSvt1YWTjygLTAiGx5W417vFz1YCArtO5Ktsve0Ri_E73F5-TE7QoNsZPDySSmGBiID5pC0VpZJqA3GJp03qCy0M0yFPAT-NgkxPxmlKBVeBMDym0tNKsdQEsSc8ZWj7FNWms6k-QxgcHZhdKw35mw_2T3noa59pzbihMgzPUWMziaPqLylGPzN48ffpS7RnZd4tjYSxBqqV-UJfoR25LLMib6L6faefvDSd8eEo6T0lb19ahb4l
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0BBcGJXez4AEeD4yZpjIQ4ABVVoVSih94qxwtU6gJJ2D6Kf2TstnBA4saBq5NYSmbyxjN-ngdwIGSsXecniqHV0jDikgpbUdQgWqpAqihW0otNVBqNpN0WzSn4mJyFcbTKCSZ6oNZD5WrkxxyXEmUeYT5z9vhEnWqU212dSGiM3KJu3l8xZctPaxdo30POq5et8ys6VhWgMuIhLSvNmGLGYiwOjE1DaaTlJhYpYobVmN2oJE2ZFDqSViRMBUZrntooCWSgLSvjtNNQwlUEF54pePdV0uFxBRfo5dHeqe8Udiyzt-7LEeeum2qFseQH4vswVl38Zx9gCUpN-WiyZZgygxWY82xVla_Cc1Nm6Ly9riJDhLy-7JEx5Z6MBXJy4grMONrHzN_VFfA3IzmOeeqouzv34hhFTiglOF1BarUTcusELojvs_7WHR3qJLJ3j48XD_01aP3Fi67DzGA4MBtAMIyjUxttMDsN0btTEYcm5MZwYZmK403YmdisM8aAvPNtsK3fL-_D_FXr5rpzXWvUt2HBCdo7wgznOzBTZM9mF2bVS9HNsz3vbwQ6f2zeT2zmGlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parabolic+optimal+control+problems+with+combinatorial+switching+constraints+--+Part+II%3A+Outer+approximation+algorithm&rft.jtitle=arXiv.org&rft.au=Buchheim%2C+Christoph&rft.au=Gr%C3%BCtering%2C+Alexandra&rft.au=Meyer%2C+Christian&rft.date=2023-12-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2204.07008