Quantum Advantage with Shallow Circuits Under Arbitrary Corruption

Recent works by Bravyi, Gosset and K\"onig (Science 2018), Bene Watts et al. (STOC 2019), Coudron, Stark and Vidick (QIP 2019) and Le Gall (CCC 2019) have shown unconditional separations between the computational powers of shallow (i.e., small-depth) quantum and classical circuits: quantum circ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Hasegawa, Atsuya, François Le Gall
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 12.05.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent works by Bravyi, Gosset and K\"onig (Science 2018), Bene Watts et al. (STOC 2019), Coudron, Stark and Vidick (QIP 2019) and Le Gall (CCC 2019) have shown unconditional separations between the computational powers of shallow (i.e., small-depth) quantum and classical circuits: quantum circuits can solve in constant depth computational problems that require logarithmic depth to solve with classical circuits. Using quantum error correction, Bravyi, Gosset, K\"onig and Tomamichel (Nature Physics 2020) further proved that a similar separation still persists even if quantum circuits are subject to local stochastic noise. In this paper, we consider the case where any constant fraction of the qubits (for instance, huge blocks of qubits) may be arbitrarily corrupted at the end of the computation. We make a first step forward towards establishing a quantum advantage even in this extremely challenging setting: we show that there exists a computational problem that can be solved in constant depth by a quantum circuit but such that even solving any large subproblem of this problem requires logarithmic depth with bounded fan-in classical circuits. This gives another compelling evidence of the computational power of quantum shallow circuits. In order to show our result, we consider the Graph State Sampling problem (which was also used in prior works) on expander graphs. We exploit the "robustness" of expander graphs against vertex corruption to show that a subproblem hard for small-depth classical circuits can still be extracted from the output of the corrupted quantum circuit.
AbstractList Recent works by Bravyi, Gosset and K\"onig (Science 2018), Bene Watts et al. (STOC 2019), Coudron, Stark and Vidick (QIP 2019) and Le Gall (CCC 2019) have shown unconditional separations between the computational powers of shallow (i.e., small-depth) quantum and classical circuits: quantum circuits can solve in constant depth computational problems that require logarithmic depth to solve with classical circuits. Using quantum error correction, Bravyi, Gosset, K\"onig and Tomamichel (Nature Physics 2020) further proved that a similar separation still persists even if quantum circuits are subject to local stochastic noise. In this paper, we consider the case where any constant fraction of the qubits (for instance, huge blocks of qubits) may be arbitrarily corrupted at the end of the computation. We make a first step forward towards establishing a quantum advantage even in this extremely challenging setting: we show that there exists a computational problem that can be solved in constant depth by a quantum circuit but such that even solving any large subproblem of this problem requires logarithmic depth with bounded fan-in classical circuits. This gives another compelling evidence of the computational power of quantum shallow circuits. In order to show our result, we consider the Graph State Sampling problem (which was also used in prior works) on expander graphs. We exploit the "robustness" of expander graphs against vertex corruption to show that a subproblem hard for small-depth classical circuits can still be extracted from the output of the corrupted quantum circuit.
Author François Le Gall
Hasegawa, Atsuya
Author_xml – sequence: 1
  givenname: Atsuya
  surname: Hasegawa
  fullname: Hasegawa, Atsuya
– sequence: 2
  fullname: François Le Gall
BookMark eNotjVFLwzAURoMoOOd-gG8Bn1uTe5M2fZxFpzAQcT6PmzZ1GbWdabPpv7egT9-BA-e7Yudd3znGbqRIldFa3FH49scUpNCpEJnAMzYDRJkYBXDJFsOwF0JAloPWOGP3r5G6MX7yZX2cgD4cP_lxx9921Lb9iZc-VNGPA3_vahf4Mlg_Bgo_vOxDiIfR9901u2ioHdzif-ds8_iwKZ-S9cvquVyuE9KgEiRwTS6q3GZERjXGNKLJK7BGisIQobWqsFDlKG1WVZNHqnNZFJIgwxpwzm7_sofQf0U3jNt9H0M3PW5BA4BGpRX-AjLSTbY
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2105.00603
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a524-3a2ef70c7b6aa84f88f0f7c2b81098aa3bb49b2c731b6ccf883ad71991a263d23
IEDL.DBID M7S
IngestDate Mon Jun 30 09:23:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-3a2ef70c7b6aa84f88f0f7c2b81098aa3bb49b2c731b6ccf883ad71991a263d23
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2522253454?pq-origsite=%requestingapplication%
PQID 2522253454
PQPubID 2050157
ParticipantIDs proquest_journals_2522253454
PublicationCentury 2000
PublicationDate 20220512
PublicationDateYYYYMMDD 2022-05-12
PublicationDate_xml – month: 05
  year: 2022
  text: 20220512
  day: 12
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7943478
SecondaryResourceType preprint
Snippet Recent works by Bravyi, Gosset and K\"onig (Science 2018), Bene Watts et al. (STOC 2019), Coudron, Stark and Vidick (QIP 2019) and Le Gall (CCC 2019) have...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Circuits
Corruption
Error correction
Graphs
Qubits (quantum computing)
Title Quantum Advantage with Shallow Circuits Under Arbitrary Corruption
URI https://www.proquest.com/docview/2522253454
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8MgGCW6aeLJ3_HHXDh4rWspBXoybtmiiS7VLWaeFqA06cF10nb65wvYabx48Ui4kA_y-L7H43sAXNJAmeIfpZ6MsSlQ4kx5ApkNiUxqggRRijvx-PM9HY_ZbBYnDeFWNrLKNSY6oE4LaTnyHopsZRLiCF8v3zzrGmVfVxsLjU3Qtl0SAifdm3xzLIhQkzGHX4-ZrnVXj-uPfHVl6hxLpRBnlfUbgt29Mtr974r2QDvhS6X3wYZaHIBtp-eU5SHoP9YmZPUrdK7JlQENaBlXOLHeKcU7HORa1nlVQud7BG-0yN3_ezgotK4djByB6Wg4Hdx6jV2CxyOEvZAjlVFfUkE4ZzhjLPMzKpFggR8zzkMhcCyQpGEgiJRmPuQptconjkiYovAYtBbFQp0AKBjmwicp9bnChEQxS4ViMeeII5OOBaegs47IvDny5fwnHGd_T5-DHWT_ENgWqKgDWpWu1QXYkqsqL3UXtPvDcfLUdTtpRsndQ_LyCVSxqSg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTwIxEG0IaPTkd_xA7UGPK8vsbts9GKMogYAEAzHcSNvtJnsQcJcF_VH-R9sCGi_ePHjuZdOZfZ03fZ2H0AWtKk3-IXJk6GuCEsbKEaADEujSBARRilvx-HObdjpsMAi7BfSxegtjZJUrTLRAHY2l6ZFXIDDMxPMD_2by6hjXKHO7urLQWKRFS73PNWXLrpv3Or6XAPWHfq3hLF0FHB6A73gcVExdSQXhnPkxY7EbUwmCVd2Qce4J4YcCJPWqgkip1z0eUSMQ4kC8yMw50Ihf0lUEhFYp2Ptq6QChukD3FnendlJYhadvyexK0yrTuSHWmesn4ttjrL71zzZgG5W6fKLSHVRQo120btWqMttDd0-5Toj8BVtP6KmGRGz6ybhnnGHGc1xLUpkn0wxbVyd8m4rEThfAtXGa5hYk91H_L776ABVH45E6RFgwnwuXRNTlyickCFkkFAs5Bw662KweofIqAMPlD50Nv3f_-Pflc7TR6D-2h-1mp3WCNsG8ljDDXqGMitM0V6doTc6mSZae2eTBaPjHsfoEcIMCQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Advantage+with+Shallow+Circuits+Under+Arbitrary+Corruption&rft.jtitle=arXiv.org&rft.au=Hasegawa%2C+Atsuya&rft.au=Fran%C3%A7ois+Le+Gall&rft.date=2022-05-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2105.00603