Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India
Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern...
Uložené v:
| Vydané v: | Water resources management Ročník 24; číslo 9; s. 1845 - 1865 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Dordrecht : Springer Netherlands
01.07.2010
Springer Netherlands Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-4741, 1573-1650 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well. |
|---|---|
| AbstractList | Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well. Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz, gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well. [PUBLICATION ABSTRACT] Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg–Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well. Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well. |
| Author | Mohanty, Sheelabhadra Jha, Madan K Kumar, Ashwani Sudheer, K. P |
| Author_xml | – sequence: 1 fullname: Mohanty, Sheelabhadra – sequence: 2 fullname: Jha, Madan K – sequence: 3 fullname: Kumar, Ashwani – sequence: 4 fullname: Sudheer, K. P |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22862202$$DView record in Pascal Francis |
| BookMark | eNp9kV1rVDEQhoNUcFv9AV4ZBKk3RyfJyddlKW1dWBXUXodsTrKkniY1OdvWf2-2p0XoxV4NwzzPMMN7iA5STh6htwQ-EQD5uRJChe4AdKc5ld39C7QgXLKOCA4HaAGaQtfLnrxCh7VeATRLwwJtTsoUQ3TRjvib35aHMt3l8ht_zYMfY9rgkAu-KHmbhjs7-YJX_taP-DwX72yddkRM2OIf8bYNl3W0acA54LM29CXhZRqifY1eBjtW_-axHqHL87Nfp1-61feL5enJqrOcsqljIQz9IGVYC9cD1wPjAzg2WC3WUgmvlFBU0tYrxtfO-cA1WN1rJTXzRLEjdDzvvSn5z9bXyVzH6vzYjvJ5W43se0FBEdHIj3tJsiMlY4I09P0z9CpvS2p_GCZ4T5jQfYM-PEK2OjuGYpOL1dyUeG3LX0OpEpQCbZycOVdyrcUH4-Jkp5jTVGwcDQGzS9TMiZoWk9klau6bSZ6ZT8v3OXR2amPTxpf_p--T3s1SsNnYTWlvXP6kQBgQxUl7hP0DBFW9fg |
| CODEN | WRMAEJ |
| CitedBy_id | crossref_primary_10_1007_s11269_015_1131_7 crossref_primary_10_1007_s11269_022_03275_1 crossref_primary_10_1007_s41939_023_00250_0 crossref_primary_10_1016_j_scitotenv_2015_09_026 crossref_primary_10_1080_02626667_2016_1159683 crossref_primary_10_2166_ws_2024_005 crossref_primary_10_1007_s11269_022_03147_8 crossref_primary_10_1007_s12665_013_2702_7 crossref_primary_10_1002_clen_201400267 crossref_primary_10_1016_j_rineng_2024_103554 crossref_primary_10_3390_rs15071808 crossref_primary_10_3390_app14167358 crossref_primary_10_1007_s10040_018_1866_3 crossref_primary_10_1080_02626667_2017_1410891 crossref_primary_10_1016_j_psep_2021_05_026 crossref_primary_10_1080_02626667_2021_1968404 crossref_primary_10_1016_j_saa_2017_04_001 crossref_primary_10_1007_s40996_023_01068_z crossref_primary_10_1061_JHYEFF_HEENG_5840 crossref_primary_10_2166_hydro_2021_108 crossref_primary_10_1016_j_envres_2022_113747 crossref_primary_10_1016_j_jhydrol_2013_04_041 crossref_primary_10_1080_02626667_2021_1906427 crossref_primary_10_2166_wp_2023_252 crossref_primary_10_3390_hydrology6010019 crossref_primary_10_1007_s10668_019_00319_2 crossref_primary_10_1016_j_jhydrol_2024_130737 crossref_primary_10_1016_j_jhydrol_2019_124015 crossref_primary_10_1121_1_5024341 crossref_primary_10_3390_w11102163 crossref_primary_10_1007_s10668_021_01361_9 crossref_primary_10_3390_w14152307 crossref_primary_10_1080_19443994_2014_937756 crossref_primary_10_3390_s17122897 crossref_primary_10_1007_s00704_022_04025_4 crossref_primary_10_1002_hyp_15086 crossref_primary_10_1007_s12145_024_01623_w crossref_primary_10_1007_s00500_018_3528_8 crossref_primary_10_1016_j_jenvman_2016_07_069 crossref_primary_10_1007_s40201_018_0301_y crossref_primary_10_1016_j_jhydrol_2018_12_037 crossref_primary_10_1016_j_jhydrol_2015_09_038 crossref_primary_10_1061__ASCE_HE_1943_5584_0001276 crossref_primary_10_1080_10106049_2022_2136265 crossref_primary_10_2166_hydro_2017_102 crossref_primary_10_1007_s11269_017_1598_5 crossref_primary_10_3390_w9050323 crossref_primary_10_1007_s12517_021_06508_6 crossref_primary_10_1007_s12517_023_11584_x crossref_primary_10_3390_w13020139 crossref_primary_10_1016_j_jhydrol_2011_06_013 crossref_primary_10_1016_j_jhydrol_2019_02_011 crossref_primary_10_2166_wcc_2022_339 crossref_primary_10_1007_s00477_023_02570_6 crossref_primary_10_1007_s40899_024_01146_8 crossref_primary_10_1007_s10040_013_1029_5 crossref_primary_10_1177_1369433219849809 crossref_primary_10_1007_s00500_022_07097_6 crossref_primary_10_1007_s12665_014_3997_8 crossref_primary_10_1016_j_agwat_2016_05_001 crossref_primary_10_1016_j_jhydrol_2024_131366 crossref_primary_10_3390_rs15010188 crossref_primary_10_3390_w15061085 crossref_primary_10_1007_s42452_025_06817_5 crossref_primary_10_1007_s11269_022_03204_2 crossref_primary_10_1016_j_gsd_2020_100361 crossref_primary_10_1016_j_agwat_2021_107185 crossref_primary_10_2166_hydro_2018_002 crossref_primary_10_1016_j_gsd_2024_101213 crossref_primary_10_1007_s40996_023_01158_y crossref_primary_10_1080_08839514_2022_2138130 crossref_primary_10_1007_s11269_010_9628_6 crossref_primary_10_3390_w15234041 crossref_primary_10_1080_03067319_2020_1743834 crossref_primary_10_1155_2015_742138 crossref_primary_10_1007_s11269_011_9790_5 crossref_primary_10_1007_s11269_021_02787_6 crossref_primary_10_1007_s12517_020_05702_2 crossref_primary_10_2166_nh_2022_035 crossref_primary_10_1016_j_scitotenv_2019_135539 crossref_primary_10_1038_s41598_023_36897_5 crossref_primary_10_1016_j_apenergy_2024_123317 crossref_primary_10_3390_w17162375 crossref_primary_10_1007_s12665_021_09746_9 crossref_primary_10_1007_s40808_021_01319_w crossref_primary_10_1016_j_envsci_2021_07_015 crossref_primary_10_1016_j_jhydrol_2020_125335 crossref_primary_10_1007_s11269_017_1811_6 crossref_primary_10_1016_j_jhydrol_2023_130359 crossref_primary_10_1007_s10040_014_1204_3 crossref_primary_10_1007_s11269_014_0553_y crossref_primary_10_1016_j_chaos_2019_07_007 crossref_primary_10_3390_su12104023 crossref_primary_10_1016_j_measurement_2017_03_003 crossref_primary_10_1007_s11269_014_0616_0 crossref_primary_10_1109_ACCESS_2018_2875068 crossref_primary_10_1002_hyp_15169 crossref_primary_10_1080_02626667_2018_1552788 crossref_primary_10_1007_s13762_018_1845_1 crossref_primary_10_1016_j_jconhyd_2018_10_010 crossref_primary_10_1007_s11269_014_0810_0 crossref_primary_10_1016_j_cageo_2016_03_002 crossref_primary_10_1016_j_jenvman_2021_113774 crossref_primary_10_3390_w12082107 crossref_primary_10_1007_s10661_019_7784_6 crossref_primary_10_3390_w10040472 crossref_primary_10_1680_jgrim_24_00006 crossref_primary_10_1007_s11269_015_1132_6 crossref_primary_10_1061__ASCE_HE_1943_5584_0001591 crossref_primary_10_1007_s10661_024_12357_z crossref_primary_10_1007_s11269_016_1347_1 crossref_primary_10_1007_s11600_023_01189_z crossref_primary_10_3389_frwa_2024_1401689 crossref_primary_10_1007_s11269_012_0021_5 crossref_primary_10_1016_j_scitotenv_2021_147319 crossref_primary_10_3390_su13105474 crossref_primary_10_1007_s10040_016_1473_0 crossref_primary_10_1002_hyp_10166 crossref_primary_10_1007_s12517_014_1706_2 crossref_primary_10_1007_s11069_019_03769_z crossref_primary_10_1016_j_scitotenv_2017_04_189 crossref_primary_10_1007_s12665_015_5198_5 crossref_primary_10_3390_w13213130 crossref_primary_10_2166_ws_2019_204 crossref_primary_10_1007_s13762_021_03793_2 crossref_primary_10_25130_tjes_32_2_29 crossref_primary_10_1007_s00521_014_1794_7 crossref_primary_10_1007_s11269_014_0802_0 crossref_primary_10_3390_su12218932 crossref_primary_10_3390_w15040801 crossref_primary_10_1016_j_agwat_2025_109729 crossref_primary_10_1016_j_proeng_2016_07_471 crossref_primary_10_1007_s10596_018_9742_8 crossref_primary_10_1016_j_atech_2023_100230 crossref_primary_10_4236_cweee_2017_61009 crossref_primary_10_1007_s11269_012_0045_x crossref_primary_10_1007_s40808_022_01387_6 crossref_primary_10_3390_hydrology8030127 |
| Cites_doi | 10.1061/(ASCE)1084-0699(2000)5:2(115) 10.1016/S0022-1694(00)00214-6 10.1007/s11269-006-4007-z 10.1016/j.jhydrol.2007.03.017 10.1002/hyp.554 10.1029/2000WR900368 10.1007/s10040-008-0279-0 10.1016/j.watres.2003.09.026 10.1016/S0169-7722(99)00081-9 10.1139/cjce-26-3-293 10.1111/j.1745-6584.2005.0003.x 10.1016/0022-1694(92)90046-X 10.1016/j.jhydrol.2004.12.001 10.1111/j.1745-6584.1992.tb01787.x 10.1007/s00254-008-1619-z 10.1002/hyp.6686 10.1016/S0022-1694(02)00103-8 10.1029/1998WR900086 10.1029/98WR00006 10.1016/j.jhydrol.2005.05.028 10.1016/S1364-8152(98)00019-X 10.1007/s00254-006-0452-5 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1061/(ASCE)1084-0699(2000)5:2(180) 10.1016/S0022-1694(00)00344-9 10.1061/(ASCE)0733-9496(2002)128:5(370) 10.1061/(ASCE)1084-0699(2003)8:6(348) 10.1016/S1462-0758(01)00045-0 10.1111/j.1745-6584.2004.tb02446.x 10.1016/0893-6080(89)90020-8 10.1016/S0022-1694(98)00273-X 10.1007/s10040-004-0401-x 10.1111/0885-9507.00069 10.1038/323533a0 10.1061/(ASCE)0887-3801(2003)17:4(281) 10.1007/s10040-004-0385-6 10.1016/S1364-8152(03)00135-X 10.1162/neco.1992.4.3.448 10.1093/oso/9780198538493.001.0001 10.1139/l98-069 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media B.V. 2009 2015 INIST-CNRS Springer Science+Business Media B.V. 2010 |
| Copyright_xml | – notice: Springer Science+Business Media B.V. 2009 – notice: 2015 INIST-CNRS – notice: Springer Science+Business Media B.V. 2010 |
| DBID | FBQ AAYXX CITATION IQODW 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.0 L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-009-9527-x |
| DatabaseName | AGRIS CrossRef Pascal-Francis ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection (Proquest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database (Proquest) Biological Science Database (Proquest) Engineering Database (Proquest) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA Technology Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 1865 |
| ExternalDocumentID | 2050778881 22862202 10_1007_s11269_009_9527_x US201301851286 |
| Genre | Feature |
| GeographicLocations | Asia India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS H13 PQBZA AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB IQODW 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.0 L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-a523t-3ffd4d77fb6c4059d35d0c3da96b786e8868272da9835bccef590a9498793e183 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278363900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4741 |
| IngestDate | Thu Oct 02 06:23:17 EDT 2025 Fri Sep 05 14:25:01 EDT 2025 Tue Nov 04 17:03:50 EST 2025 Mon Jul 21 09:16:55 EDT 2025 Sat Nov 29 02:11:37 EST 2025 Tue Nov 18 20:42:48 EST 2025 Fri Feb 21 02:26:42 EST 2025 Wed Dec 27 19:20:55 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Backpropagation GDX algorithm Groundwater level prediction Artificial neural network Bayesian regularization algorithm River island Lavenberg-Marquardt algorithm rivers algorithms models rainfall Bayesian regularization algorithm neural networks ground water water table accuracy lead pumping surface water planning water resources aquifers islands water resource management prediction evaporation |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a523t-3ffd4d77fb6c4059d35d0c3da96b786e8868272da9835bccef590a9498793e183 |
| Notes | http://dx.doi.org/10.1007/s11269-009-9527-x SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 365413694 |
| PQPubID | 54174 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_744620816 proquest_miscellaneous_1446273361 proquest_journals_365413694 pascalfrancis_primary_22862202 crossref_citationtrail_10_1007_s11269_009_9527_x crossref_primary_10_1007_s11269_009_9527_x springer_journals_10_1007_s11269_009_9527_x fao_agris_US201301851286 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-07-01 |
| PublicationDateYYYYMMDD | 2010-07-01 |
| PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2010 |
| Publisher | Dordrecht : Springer Netherlands Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Dordrecht : Springer Netherlands – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Samani, Gohari-Moghadam, Safavi (CR40) 2007; 340 Coulibaly, Anctil, Bobee (CR12) 1999; 26 Kalf, Woolley (CR25) 2005; 13 Fausett (CR16) 1994 Sudheer, Gosain, Ramasastri (CR43) 2002; 16 Sophocleous (CR42) 2005; 13 French, Krajewski, Cuykendall (CR17) 1992; 137 Hong, Rosen (CR22) 2001; 3 Porter, Gibbs, Jones, Huyakorn, Hamm, Flach (CR37) 2000; 42 Maier, Dandy (CR30) 1997; 12 (CR3) 2000; 5 CR34 Balkhair (CR6) 2002; 265 Shigdi, Garcia (CR41) 2003; 17 Milot, Rodriguez, Serodes (CR33) 2002; 128 Alley, Leake (CR1) 2004; 42 Thirumalaiah, Deo (CR44) 2000; 5 Aziz, Wong (CR5) 1992; 30 Rumelhart, Hinton, Williams (CR38) 1986; 323 Hornik, Stinchombe, White (CR23) 1989; 2 Coulibaly, Anctil, Aravena, Bobee (CR14) 2001; 37 Campolo, Andreussi, Soldati (CR9) 1999; 35 Coppola, Szidarovszky, Poulton, Charles (CR10) 2003; 8 Toth, Brath, Montanari (CR46) 2000; 239 Hagen, Demceth, Beale (CR20) 1996 Karahan, Ayvaz (CR26) 2008; 16 Nayak, Rao, Sudheer (CR36) 2006; 20 (CR4) 2000; 5 Bishop (CR8) 1995 Morshed, Kaluarachchi (CR35) 1998; 34 Haykin (CR21) 1999 Todd, Mays (CR45) 2005 Uddameri (CR47) 2007; 51 CR24 Krishna, Rao, Vijaya (CR27) 2008; 22 Mackay (CR29) 1991; 4 Maier, Dandy (CR31) 1998; 13 Banerjee, Prasad, Singh (CR7) 2009; 58 Coppola, Rana, Poulton, Szidarovszky, Uhl (CR11) 2005; 43 Gobindraju, Ramachandra Rao (CR19) 2000 Kuo, Liu, Lin (CR28) 2004; 38 Masters (CR32) 1995 Anctil, Perrin, Andreassian (CR2) 2004; 19 Daliakopoulos, Coulibaly, Tsanis (CR15) 2005; 309 Coulibaly, Anctil, Bobee (CR13) 2000; 230 Garcia, Shigdi (CR18) 2006; 318 Sajikumar, Thandaveswara (CR39) 1999; 216 L Fausett (9527_CR16) 1994 KP Sudheer (9527_CR43) 2002; 16 A Shigdi (9527_CR41) 2003; 17 YS Hong (9527_CR22) 2001; 3 N Sajikumar (9527_CR39) 1999; 216 9527_CR24 K Hornik (9527_CR23) 1989; 2 M Campolo (9527_CR9) 1999; 35 HR Maier (9527_CR30) 1997; 12 FRP Kalf (9527_CR25) 2005; 13 ASCE Task Committee (9527_CR3) 2000; 5 T Masters (9527_CR32) 1995 ARA Aziz (9527_CR5) 1992; 30 HR Maier (9527_CR31) 1998; 13 M Samani (9527_CR40) 2007; 340 DK Todd (9527_CR45) 2005 E Toth (9527_CR46) 2000; 239 DW Porter (9527_CR37) 2000; 42 CM Bishop (9527_CR8) 1995 P Coulibaly (9527_CR13) 2000; 230 MT Hagen (9527_CR20) 1996 F Anctil (9527_CR2) 2004; 19 P Coulibaly (9527_CR12) 1999; 26 H Karahan (9527_CR26) 2008; 16 P Banerjee (9527_CR7) 2009; 58 J Milot (9527_CR33) 2002; 128 ASCE Task Committee (9527_CR4) 2000; 5 E Coppola (9527_CR10) 2003; 8 RS Gobindraju (9527_CR19) 2000 LA Garcia (9527_CR18) 2006; 318 KS Balkhair (9527_CR6) 2002; 265 WM Alley (9527_CR1) 2004; 42 MN French (9527_CR17) 1992; 137 J Morshed (9527_CR35) 1998; 34 M Sophocleous (9527_CR42) 2005; 13 9527_CR34 IN Daliakopoulos (9527_CR15) 2005; 309 V Kuo (9527_CR28) 2004; 38 DE Rumelhart (9527_CR38) 1986; 323 S Haykin (9527_CR21) 1999 B Krishna (9527_CR27) 2008; 22 V Uddameri (9527_CR47) 2007; 51 DJC Mackay (9527_CR29) 1991; 4 PC Nayak (9527_CR36) 2006; 20 K Thirumalaiah (9527_CR44) 2000; 5 EA Coppola (9527_CR11) 2005; 43 P Coulibaly (9527_CR14) 2001; 37 |
| References_xml | – volume: 5 start-page: 115 issue: 2 year: 2000 end-page: 123 ident: CR3 article-title: Artificial neural networks in hydrology—I: preliminary concepts publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – volume: 230 start-page: 244 year: 2000 end-page: 257 ident: CR13 article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00214-6 – year: 2005 ident: CR45 publication-title: Groundwater hydrology – volume: 20 start-page: 77 year: 2006 end-page: 90 ident: CR36 article-title: Groundwater level forecasting in a shallow aquifer using artificial neural network approach publication-title: Water Resour Manag doi: 10.1007/s11269-006-4007-z – volume: 340 start-page: 1 year: 2007 end-page: 11 ident: CR40 article-title: A simple neural network model for the determination of aquifer parameters publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.03.017 – volume: 16 start-page: 1325 year: 2002 end-page: 1330 ident: CR43 article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models publication-title: Hydrol Process doi: 10.1002/hyp.554 – volume: 37 start-page: 885 issue: 4 year: 2001 end-page: 896 ident: CR14 article-title: Artificial neural network modeling of water table depth fluctuations publication-title: Water Resour Res doi: 10.1029/2000WR900368 – volume: 16 start-page: 817 year: 2008 end-page: 827 ident: CR26 article-title: Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks publication-title: Hydrogeol J doi: 10.1007/s10040-008-0279-0 – volume: 38 start-page: 148 issue: 1 year: 2004 end-page: 158 ident: CR28 article-title: Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan publication-title: Water Res doi: 10.1016/j.watres.2003.09.026 – volume: 42 start-page: 303 year: 2000 end-page: 335 ident: CR37 article-title: Data fusion modeling for groundwater systems publication-title: J Contam Hydrol doi: 10.1016/S0169-7722(99)00081-9 – volume: 26 start-page: 293 issue: 3 year: 1999 end-page: 304 ident: CR12 article-title: Hydrological forecasting using artificial neural networks: the state of art publication-title: Can J Civ Eng doi: 10.1139/cjce-26-3-293 – volume: 43 start-page: 231 issue: 2 year: 2005 end-page: 241 ident: CR11 article-title: A neural network model for predicting aquifer water level elevations publication-title: Ground Water doi: 10.1111/j.1745-6584.2005.0003.x – volume: 137 start-page: 1 year: 1992 end-page: 31 ident: CR17 article-title: Rainfall forecasting in space and time using neural network publication-title: J Hydrol doi: 10.1016/0022-1694(92)90046-X – volume: 309 start-page: 229 year: 2005 end-page: 240 ident: CR15 article-title: Groundwater level forecasting using artificial neural network publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.12.001 – year: 2000 ident: CR19 publication-title: Artificial neural network in hydrology – volume: 30 start-page: 164 issue: 2 year: 1992 end-page: 166 ident: CR5 article-title: Neural network approach to the determination of aquifer parameters publication-title: Ground Water doi: 10.1111/j.1745-6584.1992.tb01787.x – volume: 58 start-page: 1239 year: 2009 end-page: 1246 ident: CR7 article-title: Forecasting of groundwater level in hard rock region using artificial neural network publication-title: Environ Geol doi: 10.1007/s00254-008-1619-z – volume: 22 start-page: 1180 year: 2008 end-page: 1188 ident: CR27 article-title: Modeling groundwater levels in an urban coastal aquifer using artificial neural networks publication-title: Hydrol Process doi: 10.1002/hyp.6686 – year: 1995 ident: CR8 publication-title: Neural networks for pattern recognition – volume: 265 start-page: 118 issue: 1 year: 2002 end-page: 128 ident: CR6 article-title: Aquifer parameters determination for large diameter wells using neural network approach publication-title: J Hydrol doi: 10.1016/S0022-1694(02)00103-8 – volume: 35 start-page: 1191 issue: 4 year: 1999 end-page: 1197 ident: CR9 article-title: River flood forecasting with neural network model publication-title: Water Resour Res doi: 10.1029/1998WR900086 – volume: 34 start-page: 1101 issue: 5 year: 1998 end-page: 1113 ident: CR35 article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery publication-title: Water Resour Res doi: 10.1029/98WR00006 – volume: 318 start-page: 215 issue: 1–4 year: 2006 end-page: 231 ident: CR18 article-title: Using neural networks for parameter estimation in ground water publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.05.028 – volume: 13 start-page: 179 year: 1998 end-page: 191 ident: CR31 article-title: Understanding the behaviour and optimizing the performance of backpropagation neural networks: an empirical study publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00019-X – volume: 51 start-page: 885 year: 2007 end-page: 895 ident: CR47 article-title: Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas publication-title: Environ Geol doi: 10.1007/s00254-006-0452-5 – volume: 5 start-page: 124 issue: 2 year: 2000 end-page: 137 ident: CR4 article-title: Artificial neural networks in hydrology—II: hydrologic applications publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – year: 1994 ident: CR16 publication-title: Fundamentals of neural networks – volume: 5 start-page: 180 issue: 2 year: 2000 end-page: 189 ident: CR44 article-title: Hydrological forecasting using neural networks publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(180) – volume: 239 start-page: 132 year: 2000 end-page: 147 ident: CR46 article-title: Comparison of short-term rainfall prediction models for real-time flood forecasting publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00344-9 – year: 1996 ident: CR20 publication-title: Neural network design – volume: 128 start-page: 370 issue: 5 year: 2002 end-page: 376 ident: CR33 article-title: Contribution of neural networks for modeling trihalomethanes occurrence in drinking water publication-title: J Water Resour Plan Manage ASCE doi: 10.1061/(ASCE)0733-9496(2002)128:5(370) – volume: 8 start-page: 348 issue: 6 year: 2003 end-page: 360 ident: CR10 article-title: Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2003)8:6(348) – volume: 3 start-page: 193 issue: 3 year: 2001 end-page: 204 ident: CR22 article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network publication-title: Urban Water doi: 10.1016/S1462-0758(01)00045-0 – volume: 42 start-page: 12 issue: 1 year: 2004 end-page: 16 ident: CR1 article-title: The journey from safe yield to sustainability publication-title: Ground Water doi: 10.1111/j.1745-6584.2004.tb02446.x – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR23 article-title: Multilayer feed forward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 216 start-page: 32 year: 1999 end-page: 35 ident: CR39 article-title: A non-linear rainfall-runoff model using an artificial neural network publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00273-X – year: 1999 ident: CR21 publication-title: Neural networks, a comprehensive foundation – volume: 13 start-page: 295 issue: 1 year: 2005 end-page: 312 ident: CR25 article-title: Applicability and methodology for determining sustainable yield in groundwater systems publication-title: Hydrogeol J doi: 10.1007/s10040-004-0401-x – volume: 12 start-page: 353 year: 1997 end-page: 368 ident: CR30 article-title: Determining inputs for neural network models of multivariate time series publication-title: Microcomput Civ Eng doi: 10.1111/0885-9507.00069 – ident: CR34 – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: CR38 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 17 start-page: 281 issue: 4 year: 2003 end-page: 289 ident: CR41 article-title: Parameter estimation in groundwater hydrology using artificial neural networks publication-title: J Comput Civ Eng ASCE doi: 10.1061/(ASCE)0887-3801(2003)17:4(281) – volume: 13 start-page: 351 issue: 2 year: 2005 end-page: 365 ident: CR42 article-title: Groundwater recharge and sustainability in the high plains aquifer in Kansas, USA publication-title: Hydrogeol J doi: 10.1007/s10040-004-0385-6 – ident: CR24 – start-page: 431 year: 1995 ident: CR32 publication-title: Advanced algorithms for neural networks: a C+ + source book – volume: 19 start-page: 357 issue: 4 year: 2004 end-page: 368 ident: CR2 article-title: Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00135-X – volume: 4 start-page: 448 issue: 3 year: 1991 end-page: 472 ident: CR29 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Comput doi: 10.1162/neco.1992.4.3.448 – volume: 8 start-page: 348 issue: 6 year: 2003 ident: 9527_CR10 publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2003)8:6(348) – volume: 43 start-page: 231 issue: 2 year: 2005 ident: 9527_CR11 publication-title: Ground Water doi: 10.1111/j.1745-6584.2005.0003.x – volume: 4 start-page: 448 issue: 3 year: 1991 ident: 9527_CR29 publication-title: Neural Comput doi: 10.1162/neco.1992.4.3.448 – volume: 5 start-page: 115 issue: 2 year: 2000 ident: 9527_CR3 publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – volume-title: Artificial neural network in hydrology year: 2000 ident: 9527_CR19 – volume: 17 start-page: 281 issue: 4 year: 2003 ident: 9527_CR41 publication-title: J Comput Civ Eng ASCE doi: 10.1061/(ASCE)0887-3801(2003)17:4(281) – ident: 9527_CR24 – volume: 35 start-page: 1191 issue: 4 year: 1999 ident: 9527_CR9 publication-title: Water Resour Res doi: 10.1029/1998WR900086 – volume: 323 start-page: 533 year: 1986 ident: 9527_CR38 publication-title: Nature doi: 10.1038/323533a0 – volume: 340 start-page: 1 year: 2007 ident: 9527_CR40 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.03.017 – volume: 13 start-page: 351 issue: 2 year: 2005 ident: 9527_CR42 publication-title: Hydrogeol J doi: 10.1007/s10040-004-0385-6 – volume: 137 start-page: 1 year: 1992 ident: 9527_CR17 publication-title: J Hydrol doi: 10.1016/0022-1694(92)90046-X – volume: 318 start-page: 215 issue: 1–4 year: 2006 ident: 9527_CR18 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.05.028 – volume: 38 start-page: 148 issue: 1 year: 2004 ident: 9527_CR28 publication-title: Water Res doi: 10.1016/j.watres.2003.09.026 – volume: 12 start-page: 353 year: 1997 ident: 9527_CR30 publication-title: Microcomput Civ Eng doi: 10.1111/0885-9507.00069 – volume-title: Neural network design year: 1996 ident: 9527_CR20 – volume: 2 start-page: 359 year: 1989 ident: 9527_CR23 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 265 start-page: 118 issue: 1 year: 2002 ident: 9527_CR6 publication-title: J Hydrol doi: 10.1016/S0022-1694(02)00103-8 – volume-title: Neural networks for pattern recognition year: 1995 ident: 9527_CR8 doi: 10.1093/oso/9780198538493.001.0001 – ident: 9527_CR34 – volume-title: Neural networks, a comprehensive foundation year: 1999 ident: 9527_CR21 – volume: 20 start-page: 77 year: 2006 ident: 9527_CR36 publication-title: Water Resour Manag doi: 10.1007/s11269-006-4007-z – volume-title: Groundwater hydrology year: 2005 ident: 9527_CR45 – volume: 26 start-page: 293 issue: 3 year: 1999 ident: 9527_CR12 publication-title: Can J Civ Eng doi: 10.1139/l98-069 – volume: 42 start-page: 303 year: 2000 ident: 9527_CR37 publication-title: J Contam Hydrol doi: 10.1016/S0169-7722(99)00081-9 – volume: 128 start-page: 370 issue: 5 year: 2002 ident: 9527_CR33 publication-title: J Water Resour Plan Manage ASCE doi: 10.1061/(ASCE)0733-9496(2002)128:5(370) – volume: 5 start-page: 180 issue: 2 year: 2000 ident: 9527_CR44 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(180) – volume-title: Fundamentals of neural networks year: 1994 ident: 9527_CR16 – volume: 13 start-page: 295 issue: 1 year: 2005 ident: 9527_CR25 publication-title: Hydrogeol J doi: 10.1007/s10040-004-0401-x – volume: 239 start-page: 132 year: 2000 ident: 9527_CR46 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00344-9 – volume: 58 start-page: 1239 year: 2009 ident: 9527_CR7 publication-title: Environ Geol doi: 10.1007/s00254-008-1619-z – volume: 13 start-page: 179 year: 1998 ident: 9527_CR31 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00019-X – volume: 34 start-page: 1101 issue: 5 year: 1998 ident: 9527_CR35 publication-title: Water Resour Res doi: 10.1029/98WR00006 – volume: 16 start-page: 817 year: 2008 ident: 9527_CR26 publication-title: Hydrogeol J doi: 10.1007/s10040-008-0279-0 – volume: 22 start-page: 1180 year: 2008 ident: 9527_CR27 publication-title: Hydrol Process doi: 10.1002/hyp.6686 – volume: 16 start-page: 1325 year: 2002 ident: 9527_CR43 publication-title: Hydrol Process doi: 10.1002/hyp.554 – volume: 3 start-page: 193 issue: 3 year: 2001 ident: 9527_CR22 publication-title: Urban Water doi: 10.1016/S1462-0758(01)00045-0 – volume: 51 start-page: 885 year: 2007 ident: 9527_CR47 publication-title: Environ Geol doi: 10.1007/s00254-006-0452-5 – start-page: 431 volume-title: Advanced algorithms for neural networks: a C+ + source book year: 1995 ident: 9527_CR32 – volume: 37 start-page: 885 issue: 4 year: 2001 ident: 9527_CR14 publication-title: Water Resour Res doi: 10.1029/2000WR900368 – volume: 42 start-page: 12 issue: 1 year: 2004 ident: 9527_CR1 publication-title: Ground Water doi: 10.1111/j.1745-6584.2004.tb02446.x – volume: 230 start-page: 244 year: 2000 ident: 9527_CR13 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00214-6 – volume: 309 start-page: 229 year: 2005 ident: 9527_CR15 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.12.001 – volume: 19 start-page: 357 issue: 4 year: 2004 ident: 9527_CR2 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00135-X – volume: 30 start-page: 164 issue: 2 year: 1992 ident: 9527_CR5 publication-title: Ground Water doi: 10.1111/j.1745-6584.1992.tb01787.x – volume: 5 start-page: 124 issue: 2 year: 2000 ident: 9527_CR4 publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – volume: 216 start-page: 32 year: 1999 ident: 9527_CR39 publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00273-X |
| SSID | ssj0010090 |
| Score | 2.3474731 |
| Snippet | Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present... |
| SourceID | proquest pascalfrancis crossref springer fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1845 |
| SubjectTerms | Algorithms Aquifers Artificial neural network Atmospheric Sciences Back propagation Backpropagation GDX algorithm basins Bayesian analysis Bayesian regularization algorithm Civil Engineering Clusters Developing countries drainage water Earth and Environmental Science Earth Sciences Earth, ocean, space Environment Evaporation Exact sciences and technology Forecasting Freshwater Geotechnical Engineering & Applied Earth Sciences Groundwater Groundwater level prediction Groundwater levels Hydrogeology hydrologic models Hydrology Hydrology. Hydrogeology Hydrology/Water Resources India Irrigation islands Lavenberg-Marquardt algorithm LDCs learning Learning theory Lithology Mathematical models momentum Neural networks Pan evaporation Parameter estimation planning prediction rain River island Rivers Studies Surface water Surface-groundwater relations Training tropics Water resources water table |
| SummonAdditionalLinks | – databaseName: Engineering Database (Proquest) dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEcCvQhUihypZ5aWd21s7F9qqoKVCSEUCkSN8uxY4RUJbBZWn5-Z5wHbCW49BRFdpLNfvbM2PNlPoAPRrtSekP6LjLwPKjAnfaKx1I6X0VPPjOJTaiTE31xYU57bk7b0yoHm5gMdWg87ZF_liRYLQuTf7m-4SQaRcnVXkFjFdapSIJIzL2zMYmA4UPaYjG4QsrRcw5JzfTl3FQUhlNmwMyE4ndLbmk1uoZIkq7F_yl2AhdLEeg_SdPkiw43__MttuBFH4Syr92o2YaVqn4JGw9KE76CS2rsqkswKuCRDokxzkg-jT5iZxjvMtq7qsMfjFjn7JgISIzEPr1riU7Nrmrm2A-ifjAae3VgTWQHLhVnYEc1js3XcH548PPbd96LMnCHa9YFlzEGhFTFsvAY7JkgZ2HiZXCmKJUuKq0LLZTAc4ztSo94z8zEmdxotAQVGpA3sFY3dbUDTKqyNCYP00D7kEK7WR4LU_qASzTpfZHBZMDE-r5iOQln_LL3tZYJRoswWoLR3mXwcbzkuivX8VTnHQTauks0p_b8TFASF8MX9Nj46P0l9MebCWwUYiIy2B0Atv2sb-2Ibgbvx1acrpSDcXXV3LaWlt-CSlBOM2CP9FHUhwRRMvg0DLT7hzz6Om-f_Em78LwjPhDTeA_WFvPb6h08878XV-18P02cvzQrHL8 priority: 102 providerName: ProQuest |
| Title | Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India |
| URI | https://link.springer.com/article/10.1007/s11269-009-9527-x https://www.proquest.com/docview/365413694 https://www.proquest.com/docview/1446273361 https://www.proquest.com/docview/744620816 |
| Volume | 24 |
| WOSCitedRecordID | wos000278363900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 7WY dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M0C dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M7P dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: PCBAR dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (Proquest) customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: PATMY dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M2P dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6sYftYes-St2uQYU9bRgcybGkx62ktNCGkKxb9yRkySqF4Yw43fbn984fyTLWQfsiY3S2E92d7qQ73Q_gnVY2F04Tvovwceqlj61yMg65sK4IjmxmDTYhRyN1daXH7Tnuqst270KS9Uy9OuzW55mOaTNfD7iM0XHcRmunSBsn0y_L0AES1BsrGtdFKdrLLpT5r1esGaPNYGeUGmkrHJ3QwFqs-Z1_hUprC3Ty4lG_fQeetw4n-9hIyEvYKMpX8OyPMoSv4Zo6m0oSjIp11Jc6O5wRVBodWGfo2zLapyr9L_RO5-ycko0YAXs6W1HqNLspmWUTSvNgJGelZ7PAhrYuxMDOSpTDN3B5Mvx8fBq3AAyxxfXpIhYheGSfDHnm0LHTXgx84oS3OsulygqlMsUlx3v043KHvB3oxOpUK9T6AieLXdgqZ2WxB0zIPNc69X1Pe45c2UEaMp07j8sx4VwWQdJxwri2OjmBZHw3q7rKNIYGx9DQGJrfEbxfPvKjKc3xP-I9ZK-x1zh1msspp4AtuiponfHTvTWeL1_GsZPzhEdw0AmBaTW8MoIA1EWm0wiOlr2omhRvsWUxu60MLbU5lZvsR8DuoZFEQ-AnEXzoRGf1kXv_zv6DqA_gaZP0QFnGb2FrMb8tDuGJ-7m4qeY92JRfv_Vg-9NwNJ7g3UVyTC0fUyubdtqrlewOZJ0aBQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_aBhJw4BstDIaR4AKySO00iQ8IobFp1UqFYJN28xw7niZNydZ0bPxR_I-85zQZRdpuO3CqKruJ0_ye36ffD-CNyk0hrSJ-F-l44jLHTW4z7gtpbOkt6cxANpFNJvn-vvq2BL-7szBUVtntiWGjdrWlGPkHSYTVMlXJp5NTTqRRlFztGDRaVOyUv87RY2s-jr7g630rxNbm7sY2n5MKcIM-14xL7x0uKfNFatFYUU4OXWylMyotsjwt8zzNRSbwO9omhcX1DlVsVIK-uZIlCgBedxluJQlKA1UKxht90gLNlRDSUeiRJaipuyRqOKk3EKnilIlQQ5HxiwU1uOxNTUWZpsH34ltCjQWL958kbdB9Ww_-s3_tIdyfG9nscysVj2CprB7Dvb9aLz6BQxpsu2cwalASPkJFPCN6ODqkz9CeZxSbq9w5WuRTNqYCK0ZkptY0VC7Ojipm2HcqbWEkW5VjtWebJjSfYKMKZe8p7N3Ikz6DlaquylVgMisKpRI3cBRnFbkZJj5VhXXogkpr0wjiDgPazjuyEzHIsb7sJU2w0QgbTbDRFxG8639y0rYjuW7yKgJLm0NUF3rvh6AkNZpnaJHgrdcX0NZfTOCgELGIYK0DlJ7vao3u0RTB634UtyPKMZmqrM8aTeEFQS02BxGwK-ZkNIcIXyJ43wH78iZXPs7za5f0Cu5s734d6_FosrMGd9siD6qqfgErs-lZ-RJu25-zo2a6HoSWwcFN4_0PH4h5Lg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD6CMk3jYfeJjI150vayyaK10yR-mCYGVKtAVcWGxJtx7BghTQk0ZbCftn-3c3JjnQRvPOypquwmTvMdn6vPB_BOJSaVVhG_i3Q8dLHjJrEx96k0NvOWdGZFNhFPJsnRkZouwe_2LAyVVbZ7YrVRu8JSjHxTEmG1jFS46ZuqiOnO6PPZOScCKUq0tmwaNUL2sl-X6L2Vn8Y7-KrfCzHa_b79lTcEA9yg_zXn0nuHy4t9Glk0XJSTQ9e30hkVpXESZUkSJSIW-B3tlNTi2oeqb1SIfrqSGQoDXncZVpIIxaYHK9PtL1sHXQoDjZcqwKPQPwtRb7cp1erc3kBEilNeQg1FzK8WlOKyNwWVaJoS35Kv6TUW7N9_UraVJhw9-o__w8fwsDG_2VYtL09gKcufwupfTRmfwQkN1n01GLUuqT6qWnlGxHF0fJ-hpc8oape7S7TVZ2yfSq8Y0ZxaU1IhOTvNmWEHVPTCSOpyxwrPdk3VloKNc5TK53B4J0_6Anp5kWdrwGScpkqFbuAoAisSMwx9pFLr0DmV1kYB9Fs8aNv0aifKkB_6uss0QUgjhDRBSF8F8KH7yVndqOS2yWsIMm1OUJHow2-C0tdouKGtgrfeWEBedzGBg0L0RQDrLbh0s9-VukNWAG-7UdyoKPtk8qy4KDUFHgQ13xwEwG6YE9McooIJ4GML8uub3Pg4L29d0hu4jzDX--PJ3jo8qKs_qNz6FfTms4vsNdyzP-en5WyjkWAGx3cN-D8j1INM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network+Modeling+for+Groundwater+Level+Forecasting+in+a+River+Island+of+Eastern+India&rft.jtitle=Water+resources+management&rft.au=Mohanty%2C+Sheelabhadra&rft.au=Jha%2C+Madan+K&rft.au=Kumar%2C+Ashwani&rft.au=Sudheer%2C+K.+P&rft.date=2010-07-01&rft.pub=Dordrecht+%3A+Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=24&rft.issue=9&rft.spage=1845&rft.epage=1865&rft_id=info:doi/10.1007%2Fs11269-009-9527-x&rft.externalDocID=US201301851286 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |