Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India

Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources management Ročník 24; číslo 9; s. 1845 - 1865
Hlavní autori: Mohanty, Sheelabhadra, Jha, Madan K, Kumar, Ashwani, Sudheer, K. P
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Dordrecht : Springer Netherlands 01.07.2010
Springer Netherlands
Springer
Springer Nature B.V
Predmet:
ISSN:0920-4741, 1573-1650
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well.
AbstractList Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well.
Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz, gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well. [PUBLICATION ABSTRACT]
Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1 week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg–Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4 weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well.
Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present study, artificial neural network models have been developed for groundwater level forecasting in a river island of tropical humid region, eastern India. ANN modeling was carried out to predict groundwater levels 1week ahead at 18 sites over the study area. The inputs to the ANN models consisted of weekly rainfall, pan evaporation, river stage, water level in the drain, pumping rate and groundwater level in the previous week, which led to 40 input nodes and 18 output nodes. Three different ANN training algorithms, viz., gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm were employed and their performance was evaluated. As the neural network became very large with 40 input nodes and 18 output nodes, the LM and BR algorithms took too much time to complete a single iteration. Consequently, the study area was divided into three clusters and the performance evaluation of the three ANN training algorithms was done separately for all the clusters. The performance of all the three ANN training algorithms in predicting groundwater levels over the study area was found to be almost equally good. However, the performance of the BR algorithm was found slightly superior to that of the GDX and LM algorithms. The ANN model trained with BR algorithm was further used for predicting groundwater levels 2, 3 and 4weeks ahead in the tubewells of one cluster using the same inputs. It was found that though the accuracy of predicted groundwater levels generally decreases with an increase in the lead time, the predicted groundwater levels are reasonable for the larger lead times as well.
Author Mohanty, Sheelabhadra
Jha, Madan K
Kumar, Ashwani
Sudheer, K. P
Author_xml – sequence: 1
  fullname: Mohanty, Sheelabhadra
– sequence: 2
  fullname: Jha, Madan K
– sequence: 3
  fullname: Kumar, Ashwani
– sequence: 4
  fullname: Sudheer, K. P
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22862202$$DView record in Pascal Francis
BookMark eNp9kV1rVDEQhoNUcFv9AV4ZBKk3RyfJyddlKW1dWBXUXodsTrKkniY1OdvWf2-2p0XoxV4NwzzPMMN7iA5STh6htwQ-EQD5uRJChe4AdKc5ld39C7QgXLKOCA4HaAGaQtfLnrxCh7VeATRLwwJtTsoUQ3TRjvib35aHMt3l8ht_zYMfY9rgkAu-KHmbhjs7-YJX_taP-DwX72yddkRM2OIf8bYNl3W0acA54LM29CXhZRqifY1eBjtW_-axHqHL87Nfp1-61feL5enJqrOcsqljIQz9IGVYC9cD1wPjAzg2WC3WUgmvlFBU0tYrxtfO-cA1WN1rJTXzRLEjdDzvvSn5z9bXyVzH6vzYjvJ5W43se0FBEdHIj3tJsiMlY4I09P0z9CpvS2p_GCZ4T5jQfYM-PEK2OjuGYpOL1dyUeG3LX0OpEpQCbZycOVdyrcUH4-Jkp5jTVGwcDQGzS9TMiZoWk9klau6bSZ6ZT8v3OXR2amPTxpf_p--T3s1SsNnYTWlvXP6kQBgQxUl7hP0DBFW9fg
CODEN WRMAEJ
CitedBy_id crossref_primary_10_1007_s11269_015_1131_7
crossref_primary_10_1007_s11269_022_03275_1
crossref_primary_10_1007_s41939_023_00250_0
crossref_primary_10_1016_j_scitotenv_2015_09_026
crossref_primary_10_1080_02626667_2016_1159683
crossref_primary_10_2166_ws_2024_005
crossref_primary_10_1007_s11269_022_03147_8
crossref_primary_10_1007_s12665_013_2702_7
crossref_primary_10_1002_clen_201400267
crossref_primary_10_1016_j_rineng_2024_103554
crossref_primary_10_3390_rs15071808
crossref_primary_10_3390_app14167358
crossref_primary_10_1007_s10040_018_1866_3
crossref_primary_10_1080_02626667_2017_1410891
crossref_primary_10_1016_j_psep_2021_05_026
crossref_primary_10_1080_02626667_2021_1968404
crossref_primary_10_1016_j_saa_2017_04_001
crossref_primary_10_1007_s40996_023_01068_z
crossref_primary_10_1061_JHYEFF_HEENG_5840
crossref_primary_10_2166_hydro_2021_108
crossref_primary_10_1016_j_envres_2022_113747
crossref_primary_10_1016_j_jhydrol_2013_04_041
crossref_primary_10_1080_02626667_2021_1906427
crossref_primary_10_2166_wp_2023_252
crossref_primary_10_3390_hydrology6010019
crossref_primary_10_1007_s10668_019_00319_2
crossref_primary_10_1016_j_jhydrol_2024_130737
crossref_primary_10_1016_j_jhydrol_2019_124015
crossref_primary_10_1121_1_5024341
crossref_primary_10_3390_w11102163
crossref_primary_10_1007_s10668_021_01361_9
crossref_primary_10_3390_w14152307
crossref_primary_10_1080_19443994_2014_937756
crossref_primary_10_3390_s17122897
crossref_primary_10_1007_s00704_022_04025_4
crossref_primary_10_1002_hyp_15086
crossref_primary_10_1007_s12145_024_01623_w
crossref_primary_10_1007_s00500_018_3528_8
crossref_primary_10_1016_j_jenvman_2016_07_069
crossref_primary_10_1007_s40201_018_0301_y
crossref_primary_10_1016_j_jhydrol_2018_12_037
crossref_primary_10_1016_j_jhydrol_2015_09_038
crossref_primary_10_1061__ASCE_HE_1943_5584_0001276
crossref_primary_10_1080_10106049_2022_2136265
crossref_primary_10_2166_hydro_2017_102
crossref_primary_10_1007_s11269_017_1598_5
crossref_primary_10_3390_w9050323
crossref_primary_10_1007_s12517_021_06508_6
crossref_primary_10_1007_s12517_023_11584_x
crossref_primary_10_3390_w13020139
crossref_primary_10_1016_j_jhydrol_2011_06_013
crossref_primary_10_1016_j_jhydrol_2019_02_011
crossref_primary_10_2166_wcc_2022_339
crossref_primary_10_1007_s00477_023_02570_6
crossref_primary_10_1007_s40899_024_01146_8
crossref_primary_10_1007_s10040_013_1029_5
crossref_primary_10_1177_1369433219849809
crossref_primary_10_1007_s00500_022_07097_6
crossref_primary_10_1007_s12665_014_3997_8
crossref_primary_10_1016_j_agwat_2016_05_001
crossref_primary_10_1016_j_jhydrol_2024_131366
crossref_primary_10_3390_rs15010188
crossref_primary_10_3390_w15061085
crossref_primary_10_1007_s42452_025_06817_5
crossref_primary_10_1007_s11269_022_03204_2
crossref_primary_10_1016_j_gsd_2020_100361
crossref_primary_10_1016_j_agwat_2021_107185
crossref_primary_10_2166_hydro_2018_002
crossref_primary_10_1016_j_gsd_2024_101213
crossref_primary_10_1007_s40996_023_01158_y
crossref_primary_10_1080_08839514_2022_2138130
crossref_primary_10_1007_s11269_010_9628_6
crossref_primary_10_3390_w15234041
crossref_primary_10_1080_03067319_2020_1743834
crossref_primary_10_1155_2015_742138
crossref_primary_10_1007_s11269_011_9790_5
crossref_primary_10_1007_s11269_021_02787_6
crossref_primary_10_1007_s12517_020_05702_2
crossref_primary_10_2166_nh_2022_035
crossref_primary_10_1016_j_scitotenv_2019_135539
crossref_primary_10_1038_s41598_023_36897_5
crossref_primary_10_1016_j_apenergy_2024_123317
crossref_primary_10_3390_w17162375
crossref_primary_10_1007_s12665_021_09746_9
crossref_primary_10_1007_s40808_021_01319_w
crossref_primary_10_1016_j_envsci_2021_07_015
crossref_primary_10_1016_j_jhydrol_2020_125335
crossref_primary_10_1007_s11269_017_1811_6
crossref_primary_10_1016_j_jhydrol_2023_130359
crossref_primary_10_1007_s10040_014_1204_3
crossref_primary_10_1007_s11269_014_0553_y
crossref_primary_10_1016_j_chaos_2019_07_007
crossref_primary_10_3390_su12104023
crossref_primary_10_1016_j_measurement_2017_03_003
crossref_primary_10_1007_s11269_014_0616_0
crossref_primary_10_1109_ACCESS_2018_2875068
crossref_primary_10_1002_hyp_15169
crossref_primary_10_1080_02626667_2018_1552788
crossref_primary_10_1007_s13762_018_1845_1
crossref_primary_10_1016_j_jconhyd_2018_10_010
crossref_primary_10_1007_s11269_014_0810_0
crossref_primary_10_1016_j_cageo_2016_03_002
crossref_primary_10_1016_j_jenvman_2021_113774
crossref_primary_10_3390_w12082107
crossref_primary_10_1007_s10661_019_7784_6
crossref_primary_10_3390_w10040472
crossref_primary_10_1680_jgrim_24_00006
crossref_primary_10_1007_s11269_015_1132_6
crossref_primary_10_1061__ASCE_HE_1943_5584_0001591
crossref_primary_10_1007_s10661_024_12357_z
crossref_primary_10_1007_s11269_016_1347_1
crossref_primary_10_1007_s11600_023_01189_z
crossref_primary_10_3389_frwa_2024_1401689
crossref_primary_10_1007_s11269_012_0021_5
crossref_primary_10_1016_j_scitotenv_2021_147319
crossref_primary_10_3390_su13105474
crossref_primary_10_1007_s10040_016_1473_0
crossref_primary_10_1002_hyp_10166
crossref_primary_10_1007_s12517_014_1706_2
crossref_primary_10_1007_s11069_019_03769_z
crossref_primary_10_1016_j_scitotenv_2017_04_189
crossref_primary_10_1007_s12665_015_5198_5
crossref_primary_10_3390_w13213130
crossref_primary_10_2166_ws_2019_204
crossref_primary_10_1007_s13762_021_03793_2
crossref_primary_10_25130_tjes_32_2_29
crossref_primary_10_1007_s00521_014_1794_7
crossref_primary_10_1007_s11269_014_0802_0
crossref_primary_10_3390_su12218932
crossref_primary_10_3390_w15040801
crossref_primary_10_1016_j_agwat_2025_109729
crossref_primary_10_1016_j_proeng_2016_07_471
crossref_primary_10_1007_s10596_018_9742_8
crossref_primary_10_1016_j_atech_2023_100230
crossref_primary_10_4236_cweee_2017_61009
crossref_primary_10_1007_s11269_012_0045_x
crossref_primary_10_1007_s40808_022_01387_6
crossref_primary_10_3390_hydrology8030127
Cites_doi 10.1061/(ASCE)1084-0699(2000)5:2(115)
10.1016/S0022-1694(00)00214-6
10.1007/s11269-006-4007-z
10.1016/j.jhydrol.2007.03.017
10.1002/hyp.554
10.1029/2000WR900368
10.1007/s10040-008-0279-0
10.1016/j.watres.2003.09.026
10.1016/S0169-7722(99)00081-9
10.1139/cjce-26-3-293
10.1111/j.1745-6584.2005.0003.x
10.1016/0022-1694(92)90046-X
10.1016/j.jhydrol.2004.12.001
10.1111/j.1745-6584.1992.tb01787.x
10.1007/s00254-008-1619-z
10.1002/hyp.6686
10.1016/S0022-1694(02)00103-8
10.1029/1998WR900086
10.1029/98WR00006
10.1016/j.jhydrol.2005.05.028
10.1016/S1364-8152(98)00019-X
10.1007/s00254-006-0452-5
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1061/(ASCE)1084-0699(2000)5:2(180)
10.1016/S0022-1694(00)00344-9
10.1061/(ASCE)0733-9496(2002)128:5(370)
10.1061/(ASCE)1084-0699(2003)8:6(348)
10.1016/S1462-0758(01)00045-0
10.1111/j.1745-6584.2004.tb02446.x
10.1016/0893-6080(89)90020-8
10.1016/S0022-1694(98)00273-X
10.1007/s10040-004-0401-x
10.1111/0885-9507.00069
10.1038/323533a0
10.1061/(ASCE)0887-3801(2003)17:4(281)
10.1007/s10040-004-0385-6
10.1016/S1364-8152(03)00135-X
10.1162/neco.1992.4.3.448
10.1093/oso/9780198538493.001.0001
10.1139/l98-069
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2009
2015 INIST-CNRS
Springer Science+Business Media B.V. 2010
Copyright_xml – notice: Springer Science+Business Media B.V. 2009
– notice: 2015 INIST-CNRS
– notice: Springer Science+Business Media B.V. 2010
DBID FBQ
AAYXX
CITATION
IQODW
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.0
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-009-9527-x
DatabaseName AGRIS
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection (Proquest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database (Proquest)
Biological Science Database (Proquest)
Engineering Database (Proquest)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
AGRICOLA

Technology Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 1865
ExternalDocumentID 2050778881
22862202
10_1007_s11269_009_9527_x
US201301851286
Genre Feature
GeographicLocations Asia
India
GeographicLocations_xml – name: India
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
H13
PQBZA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.0
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-a523t-3ffd4d77fb6c4059d35d0c3da96b786e8868272da9835bccef590a9498793e183
IEDL.DBID RSV
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278363900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Thu Oct 02 06:23:17 EDT 2025
Fri Sep 05 14:25:01 EDT 2025
Tue Nov 04 17:03:50 EST 2025
Mon Jul 21 09:16:55 EDT 2025
Sat Nov 29 02:11:37 EST 2025
Tue Nov 18 20:42:48 EST 2025
Fri Feb 21 02:26:42 EST 2025
Wed Dec 27 19:20:55 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Backpropagation GDX algorithm
Groundwater level prediction
Artificial neural network
Bayesian regularization algorithm
River island
Lavenberg-Marquardt algorithm
rivers
algorithms
models
rainfall
Bayesian regularization algorithm
neural networks
ground water
water table
accuracy
lead
pumping
surface water
planning
water resources
aquifers
islands
water resource management
prediction
evaporation
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523t-3ffd4d77fb6c4059d35d0c3da96b786e8868272da9835bccef590a9498793e183
Notes http://dx.doi.org/10.1007/s11269-009-9527-x
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 365413694
PQPubID 54174
PageCount 21
ParticipantIDs proquest_miscellaneous_744620816
proquest_miscellaneous_1446273361
proquest_journals_365413694
pascalfrancis_primary_22862202
crossref_citationtrail_10_1007_s11269_009_9527_x
crossref_primary_10_1007_s11269_009_9527_x
springer_journals_10_1007_s11269_009_9527_x
fao_agris_US201301851286
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2010
Publisher Dordrecht : Springer Netherlands
Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Dordrecht : Springer Netherlands
– name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Samani, Gohari-Moghadam, Safavi (CR40) 2007; 340
Coulibaly, Anctil, Bobee (CR12) 1999; 26
Kalf, Woolley (CR25) 2005; 13
Fausett (CR16) 1994
Sudheer, Gosain, Ramasastri (CR43) 2002; 16
Sophocleous (CR42) 2005; 13
French, Krajewski, Cuykendall (CR17) 1992; 137
Hong, Rosen (CR22) 2001; 3
Porter, Gibbs, Jones, Huyakorn, Hamm, Flach (CR37) 2000; 42
Maier, Dandy (CR30) 1997; 12
(CR3) 2000; 5
CR34
Balkhair (CR6) 2002; 265
Shigdi, Garcia (CR41) 2003; 17
Milot, Rodriguez, Serodes (CR33) 2002; 128
Alley, Leake (CR1) 2004; 42
Thirumalaiah, Deo (CR44) 2000; 5
Aziz, Wong (CR5) 1992; 30
Rumelhart, Hinton, Williams (CR38) 1986; 323
Hornik, Stinchombe, White (CR23) 1989; 2
Coulibaly, Anctil, Aravena, Bobee (CR14) 2001; 37
Campolo, Andreussi, Soldati (CR9) 1999; 35
Coppola, Szidarovszky, Poulton, Charles (CR10) 2003; 8
Toth, Brath, Montanari (CR46) 2000; 239
Hagen, Demceth, Beale (CR20) 1996
Karahan, Ayvaz (CR26) 2008; 16
Nayak, Rao, Sudheer (CR36) 2006; 20
(CR4) 2000; 5
Bishop (CR8) 1995
Morshed, Kaluarachchi (CR35) 1998; 34
Haykin (CR21) 1999
Todd, Mays (CR45) 2005
Uddameri (CR47) 2007; 51
CR24
Krishna, Rao, Vijaya (CR27) 2008; 22
Mackay (CR29) 1991; 4
Maier, Dandy (CR31) 1998; 13
Banerjee, Prasad, Singh (CR7) 2009; 58
Coppola, Rana, Poulton, Szidarovszky, Uhl (CR11) 2005; 43
Gobindraju, Ramachandra Rao (CR19) 2000
Kuo, Liu, Lin (CR28) 2004; 38
Masters (CR32) 1995
Anctil, Perrin, Andreassian (CR2) 2004; 19
Daliakopoulos, Coulibaly, Tsanis (CR15) 2005; 309
Coulibaly, Anctil, Bobee (CR13) 2000; 230
Garcia, Shigdi (CR18) 2006; 318
Sajikumar, Thandaveswara (CR39) 1999; 216
L Fausett (9527_CR16) 1994
KP Sudheer (9527_CR43) 2002; 16
A Shigdi (9527_CR41) 2003; 17
YS Hong (9527_CR22) 2001; 3
N Sajikumar (9527_CR39) 1999; 216
9527_CR24
K Hornik (9527_CR23) 1989; 2
M Campolo (9527_CR9) 1999; 35
HR Maier (9527_CR30) 1997; 12
FRP Kalf (9527_CR25) 2005; 13
ASCE Task Committee (9527_CR3) 2000; 5
T Masters (9527_CR32) 1995
ARA Aziz (9527_CR5) 1992; 30
HR Maier (9527_CR31) 1998; 13
M Samani (9527_CR40) 2007; 340
DK Todd (9527_CR45) 2005
E Toth (9527_CR46) 2000; 239
DW Porter (9527_CR37) 2000; 42
CM Bishop (9527_CR8) 1995
P Coulibaly (9527_CR13) 2000; 230
MT Hagen (9527_CR20) 1996
F Anctil (9527_CR2) 2004; 19
P Coulibaly (9527_CR12) 1999; 26
H Karahan (9527_CR26) 2008; 16
P Banerjee (9527_CR7) 2009; 58
J Milot (9527_CR33) 2002; 128
ASCE Task Committee (9527_CR4) 2000; 5
E Coppola (9527_CR10) 2003; 8
RS Gobindraju (9527_CR19) 2000
LA Garcia (9527_CR18) 2006; 318
KS Balkhair (9527_CR6) 2002; 265
WM Alley (9527_CR1) 2004; 42
MN French (9527_CR17) 1992; 137
J Morshed (9527_CR35) 1998; 34
M Sophocleous (9527_CR42) 2005; 13
9527_CR34
IN Daliakopoulos (9527_CR15) 2005; 309
V Kuo (9527_CR28) 2004; 38
DE Rumelhart (9527_CR38) 1986; 323
S Haykin (9527_CR21) 1999
B Krishna (9527_CR27) 2008; 22
V Uddameri (9527_CR47) 2007; 51
DJC Mackay (9527_CR29) 1991; 4
PC Nayak (9527_CR36) 2006; 20
K Thirumalaiah (9527_CR44) 2000; 5
EA Coppola (9527_CR11) 2005; 43
P Coulibaly (9527_CR14) 2001; 37
References_xml – volume: 5
  start-page: 115
  issue: 2
  year: 2000
  end-page: 123
  ident: CR3
  article-title: Artificial neural networks in hydrology—I: preliminary concepts
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
– volume: 230
  start-page: 244
  year: 2000
  end-page: 257
  ident: CR13
  article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00214-6
– year: 2005
  ident: CR45
  publication-title: Groundwater hydrology
– volume: 20
  start-page: 77
  year: 2006
  end-page: 90
  ident: CR36
  article-title: Groundwater level forecasting in a shallow aquifer using artificial neural network approach
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-4007-z
– volume: 340
  start-page: 1
  year: 2007
  end-page: 11
  ident: CR40
  article-title: A simple neural network model for the determination of aquifer parameters
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.03.017
– volume: 16
  start-page: 1325
  year: 2002
  end-page: 1330
  ident: CR43
  article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models
  publication-title: Hydrol Process
  doi: 10.1002/hyp.554
– volume: 37
  start-page: 885
  issue: 4
  year: 2001
  end-page: 896
  ident: CR14
  article-title: Artificial neural network modeling of water table depth fluctuations
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900368
– volume: 16
  start-page: 817
  year: 2008
  end-page: 827
  ident: CR26
  article-title: Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-008-0279-0
– volume: 38
  start-page: 148
  issue: 1
  year: 2004
  end-page: 158
  ident: CR28
  article-title: Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
  publication-title: Water Res
  doi: 10.1016/j.watres.2003.09.026
– volume: 42
  start-page: 303
  year: 2000
  end-page: 335
  ident: CR37
  article-title: Data fusion modeling for groundwater systems
  publication-title: J Contam Hydrol
  doi: 10.1016/S0169-7722(99)00081-9
– volume: 26
  start-page: 293
  issue: 3
  year: 1999
  end-page: 304
  ident: CR12
  article-title: Hydrological forecasting using artificial neural networks: the state of art
  publication-title: Can J Civ Eng
  doi: 10.1139/cjce-26-3-293
– volume: 43
  start-page: 231
  issue: 2
  year: 2005
  end-page: 241
  ident: CR11
  article-title: A neural network model for predicting aquifer water level elevations
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2005.0003.x
– volume: 137
  start-page: 1
  year: 1992
  end-page: 31
  ident: CR17
  article-title: Rainfall forecasting in space and time using neural network
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(92)90046-X
– volume: 309
  start-page: 229
  year: 2005
  end-page: 240
  ident: CR15
  article-title: Groundwater level forecasting using artificial neural network
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.12.001
– year: 2000
  ident: CR19
  publication-title: Artificial neural network in hydrology
– volume: 30
  start-page: 164
  issue: 2
  year: 1992
  end-page: 166
  ident: CR5
  article-title: Neural network approach to the determination of aquifer parameters
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1992.tb01787.x
– volume: 58
  start-page: 1239
  year: 2009
  end-page: 1246
  ident: CR7
  article-title: Forecasting of groundwater level in hard rock region using artificial neural network
  publication-title: Environ Geol
  doi: 10.1007/s00254-008-1619-z
– volume: 22
  start-page: 1180
  year: 2008
  end-page: 1188
  ident: CR27
  article-title: Modeling groundwater levels in an urban coastal aquifer using artificial neural networks
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6686
– year: 1995
  ident: CR8
  publication-title: Neural networks for pattern recognition
– volume: 265
  start-page: 118
  issue: 1
  year: 2002
  end-page: 128
  ident: CR6
  article-title: Aquifer parameters determination for large diameter wells using neural network approach
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(02)00103-8
– volume: 35
  start-page: 1191
  issue: 4
  year: 1999
  end-page: 1197
  ident: CR9
  article-title: River flood forecasting with neural network model
  publication-title: Water Resour Res
  doi: 10.1029/1998WR900086
– volume: 34
  start-page: 1101
  issue: 5
  year: 1998
  end-page: 1113
  ident: CR35
  article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
  publication-title: Water Resour Res
  doi: 10.1029/98WR00006
– volume: 318
  start-page: 215
  issue: 1–4
  year: 2006
  end-page: 231
  ident: CR18
  article-title: Using neural networks for parameter estimation in ground water
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.05.028
– volume: 13
  start-page: 179
  year: 1998
  end-page: 191
  ident: CR31
  article-title: Understanding the behaviour and optimizing the performance of backpropagation neural networks: an empirical study
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00019-X
– volume: 51
  start-page: 885
  year: 2007
  end-page: 895
  ident: CR47
  article-title: Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas
  publication-title: Environ Geol
  doi: 10.1007/s00254-006-0452-5
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  end-page: 137
  ident: CR4
  article-title: Artificial neural networks in hydrology—II: hydrologic applications
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– year: 1994
  ident: CR16
  publication-title: Fundamentals of neural networks
– volume: 5
  start-page: 180
  issue: 2
  year: 2000
  end-page: 189
  ident: CR44
  article-title: Hydrological forecasting using neural networks
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(180)
– volume: 239
  start-page: 132
  year: 2000
  end-page: 147
  ident: CR46
  article-title: Comparison of short-term rainfall prediction models for real-time flood forecasting
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00344-9
– year: 1996
  ident: CR20
  publication-title: Neural network design
– volume: 128
  start-page: 370
  issue: 5
  year: 2002
  end-page: 376
  ident: CR33
  article-title: Contribution of neural networks for modeling trihalomethanes occurrence in drinking water
  publication-title: J Water Resour Plan Manage ASCE
  doi: 10.1061/(ASCE)0733-9496(2002)128:5(370)
– volume: 8
  start-page: 348
  issue: 6
  year: 2003
  end-page: 360
  ident: CR10
  article-title: Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2003)8:6(348)
– volume: 3
  start-page: 193
  issue: 3
  year: 2001
  end-page: 204
  ident: CR22
  article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(01)00045-0
– volume: 42
  start-page: 12
  issue: 1
  year: 2004
  end-page: 16
  ident: CR1
  article-title: The journey from safe yield to sustainability
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2004.tb02446.x
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR23
  article-title: Multilayer feed forward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 216
  start-page: 32
  year: 1999
  end-page: 35
  ident: CR39
  article-title: A non-linear rainfall-runoff model using an artificial neural network
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00273-X
– year: 1999
  ident: CR21
  publication-title: Neural networks, a comprehensive foundation
– volume: 13
  start-page: 295
  issue: 1
  year: 2005
  end-page: 312
  ident: CR25
  article-title: Applicability and methodology for determining sustainable yield in groundwater systems
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-004-0401-x
– volume: 12
  start-page: 353
  year: 1997
  end-page: 368
  ident: CR30
  article-title: Determining inputs for neural network models of multivariate time series
  publication-title: Microcomput Civ Eng
  doi: 10.1111/0885-9507.00069
– ident: CR34
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: CR38
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 17
  start-page: 281
  issue: 4
  year: 2003
  end-page: 289
  ident: CR41
  article-title: Parameter estimation in groundwater hydrology using artificial neural networks
  publication-title: J Comput Civ Eng ASCE
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(281)
– volume: 13
  start-page: 351
  issue: 2
  year: 2005
  end-page: 365
  ident: CR42
  article-title: Groundwater recharge and sustainability in the high plains aquifer in Kansas, USA
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-004-0385-6
– ident: CR24
– start-page: 431
  year: 1995
  ident: CR32
  publication-title: Advanced algorithms for neural networks: a C+ + source book
– volume: 19
  start-page: 357
  issue: 4
  year: 2004
  end-page: 368
  ident: CR2
  article-title: Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(03)00135-X
– volume: 4
  start-page: 448
  issue: 3
  year: 1991
  end-page: 472
  ident: CR29
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.3.448
– volume: 8
  start-page: 348
  issue: 6
  year: 2003
  ident: 9527_CR10
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2003)8:6(348)
– volume: 43
  start-page: 231
  issue: 2
  year: 2005
  ident: 9527_CR11
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2005.0003.x
– volume: 4
  start-page: 448
  issue: 3
  year: 1991
  ident: 9527_CR29
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.3.448
– volume: 5
  start-page: 115
  issue: 2
  year: 2000
  ident: 9527_CR3
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
– volume-title: Artificial neural network in hydrology
  year: 2000
  ident: 9527_CR19
– volume: 17
  start-page: 281
  issue: 4
  year: 2003
  ident: 9527_CR41
  publication-title: J Comput Civ Eng ASCE
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(281)
– ident: 9527_CR24
– volume: 35
  start-page: 1191
  issue: 4
  year: 1999
  ident: 9527_CR9
  publication-title: Water Resour Res
  doi: 10.1029/1998WR900086
– volume: 323
  start-page: 533
  year: 1986
  ident: 9527_CR38
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 340
  start-page: 1
  year: 2007
  ident: 9527_CR40
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.03.017
– volume: 13
  start-page: 351
  issue: 2
  year: 2005
  ident: 9527_CR42
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-004-0385-6
– volume: 137
  start-page: 1
  year: 1992
  ident: 9527_CR17
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(92)90046-X
– volume: 318
  start-page: 215
  issue: 1–4
  year: 2006
  ident: 9527_CR18
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.05.028
– volume: 38
  start-page: 148
  issue: 1
  year: 2004
  ident: 9527_CR28
  publication-title: Water Res
  doi: 10.1016/j.watres.2003.09.026
– volume: 12
  start-page: 353
  year: 1997
  ident: 9527_CR30
  publication-title: Microcomput Civ Eng
  doi: 10.1111/0885-9507.00069
– volume-title: Neural network design
  year: 1996
  ident: 9527_CR20
– volume: 2
  start-page: 359
  year: 1989
  ident: 9527_CR23
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 265
  start-page: 118
  issue: 1
  year: 2002
  ident: 9527_CR6
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(02)00103-8
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 9527_CR8
  doi: 10.1093/oso/9780198538493.001.0001
– ident: 9527_CR34
– volume-title: Neural networks, a comprehensive foundation
  year: 1999
  ident: 9527_CR21
– volume: 20
  start-page: 77
  year: 2006
  ident: 9527_CR36
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-4007-z
– volume-title: Groundwater hydrology
  year: 2005
  ident: 9527_CR45
– volume: 26
  start-page: 293
  issue: 3
  year: 1999
  ident: 9527_CR12
  publication-title: Can J Civ Eng
  doi: 10.1139/l98-069
– volume: 42
  start-page: 303
  year: 2000
  ident: 9527_CR37
  publication-title: J Contam Hydrol
  doi: 10.1016/S0169-7722(99)00081-9
– volume: 128
  start-page: 370
  issue: 5
  year: 2002
  ident: 9527_CR33
  publication-title: J Water Resour Plan Manage ASCE
  doi: 10.1061/(ASCE)0733-9496(2002)128:5(370)
– volume: 5
  start-page: 180
  issue: 2
  year: 2000
  ident: 9527_CR44
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(180)
– volume-title: Fundamentals of neural networks
  year: 1994
  ident: 9527_CR16
– volume: 13
  start-page: 295
  issue: 1
  year: 2005
  ident: 9527_CR25
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-004-0401-x
– volume: 239
  start-page: 132
  year: 2000
  ident: 9527_CR46
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00344-9
– volume: 58
  start-page: 1239
  year: 2009
  ident: 9527_CR7
  publication-title: Environ Geol
  doi: 10.1007/s00254-008-1619-z
– volume: 13
  start-page: 179
  year: 1998
  ident: 9527_CR31
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00019-X
– volume: 34
  start-page: 1101
  issue: 5
  year: 1998
  ident: 9527_CR35
  publication-title: Water Resour Res
  doi: 10.1029/98WR00006
– volume: 16
  start-page: 817
  year: 2008
  ident: 9527_CR26
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-008-0279-0
– volume: 22
  start-page: 1180
  year: 2008
  ident: 9527_CR27
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6686
– volume: 16
  start-page: 1325
  year: 2002
  ident: 9527_CR43
  publication-title: Hydrol Process
  doi: 10.1002/hyp.554
– volume: 3
  start-page: 193
  issue: 3
  year: 2001
  ident: 9527_CR22
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(01)00045-0
– volume: 51
  start-page: 885
  year: 2007
  ident: 9527_CR47
  publication-title: Environ Geol
  doi: 10.1007/s00254-006-0452-5
– start-page: 431
  volume-title: Advanced algorithms for neural networks: a C+ + source book
  year: 1995
  ident: 9527_CR32
– volume: 37
  start-page: 885
  issue: 4
  year: 2001
  ident: 9527_CR14
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900368
– volume: 42
  start-page: 12
  issue: 1
  year: 2004
  ident: 9527_CR1
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2004.tb02446.x
– volume: 230
  start-page: 244
  year: 2000
  ident: 9527_CR13
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00214-6
– volume: 309
  start-page: 229
  year: 2005
  ident: 9527_CR15
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.12.001
– volume: 19
  start-page: 357
  issue: 4
  year: 2004
  ident: 9527_CR2
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(03)00135-X
– volume: 30
  start-page: 164
  issue: 2
  year: 1992
  ident: 9527_CR5
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1992.tb01787.x
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  ident: 9527_CR4
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– volume: 216
  start-page: 32
  year: 1999
  ident: 9527_CR39
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00273-X
SSID ssj0010090
Score 2.3474731
Snippet Forecasting of groundwater levels is very useful for planning integrated management of groundwater and surface water resources in a basin. In the present...
SourceID proquest
pascalfrancis
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1845
SubjectTerms Algorithms
Aquifers
Artificial neural network
Atmospheric Sciences
Back propagation
Backpropagation GDX algorithm
basins
Bayesian analysis
Bayesian regularization algorithm
Civil Engineering
Clusters
Developing countries
drainage water
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Environment
Evaporation
Exact sciences and technology
Forecasting
Freshwater
Geotechnical Engineering & Applied Earth Sciences
Groundwater
Groundwater level prediction
Groundwater levels
Hydrogeology
hydrologic models
Hydrology
Hydrology. Hydrogeology
Hydrology/Water Resources
India
Irrigation
islands
Lavenberg-Marquardt algorithm
LDCs
learning
Learning theory
Lithology
Mathematical models
momentum
Neural networks
Pan evaporation
Parameter estimation
planning
prediction
rain
River island
Rivers
Studies
Surface water
Surface-groundwater relations
Training
tropics
Water resources
water table
SummonAdditionalLinks – databaseName: Engineering Database (Proquest)
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEcCvQhUihypZ5aWd21s7F9qqoKVCSEUCkSN8uxY4RUJbBZWn5-Z5wHbCW49BRFdpLNfvbM2PNlPoAPRrtSekP6LjLwPKjAnfaKx1I6X0VPPjOJTaiTE31xYU57bk7b0yoHm5gMdWg87ZF_liRYLQuTf7m-4SQaRcnVXkFjFdapSIJIzL2zMYmA4UPaYjG4QsrRcw5JzfTl3FQUhlNmwMyE4ndLbmk1uoZIkq7F_yl2AhdLEeg_SdPkiw43__MttuBFH4Syr92o2YaVqn4JGw9KE76CS2rsqkswKuCRDokxzkg-jT5iZxjvMtq7qsMfjFjn7JgISIzEPr1riU7Nrmrm2A-ifjAae3VgTWQHLhVnYEc1js3XcH548PPbd96LMnCHa9YFlzEGhFTFsvAY7JkgZ2HiZXCmKJUuKq0LLZTAc4ztSo94z8zEmdxotAQVGpA3sFY3dbUDTKqyNCYP00D7kEK7WR4LU_qASzTpfZHBZMDE-r5iOQln_LL3tZYJRoswWoLR3mXwcbzkuivX8VTnHQTauks0p_b8TFASF8MX9Nj46P0l9MebCWwUYiIy2B0Atv2sb-2Ibgbvx1acrpSDcXXV3LaWlt-CSlBOM2CP9FHUhwRRMvg0DLT7hzz6Om-f_Em78LwjPhDTeA_WFvPb6h08878XV-18P02cvzQrHL8
  priority: 102
  providerName: ProQuest
Title Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India
URI https://link.springer.com/article/10.1007/s11269-009-9527-x
https://www.proquest.com/docview/365413694
https://www.proquest.com/docview/1446273361
https://www.proquest.com/docview/744620816
Volume 24
WOSCitedRecordID wos000278363900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 7WY
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M0C
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M7P
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: PCBAR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: PATMY
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M2P
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6sYftYes-St2uQYU9bRgcybGkx62ktNCGkKxb9yRkySqF4Yw43fbn984fyTLWQfsiY3S2E92d7qQ73Q_gnVY2F04Tvovwceqlj61yMg65sK4IjmxmDTYhRyN1daXH7Tnuqst270KS9Uy9OuzW55mOaTNfD7iM0XHcRmunSBsn0y_L0AES1BsrGtdFKdrLLpT5r1esGaPNYGeUGmkrHJ3QwFqs-Z1_hUprC3Ty4lG_fQeetw4n-9hIyEvYKMpX8OyPMoSv4Zo6m0oSjIp11Jc6O5wRVBodWGfo2zLapyr9L_RO5-ycko0YAXs6W1HqNLspmWUTSvNgJGelZ7PAhrYuxMDOSpTDN3B5Mvx8fBq3AAyxxfXpIhYheGSfDHnm0LHTXgx84oS3OsulygqlMsUlx3v043KHvB3oxOpUK9T6AieLXdgqZ2WxB0zIPNc69X1Pe45c2UEaMp07j8sx4VwWQdJxwri2OjmBZHw3q7rKNIYGx9DQGJrfEbxfPvKjKc3xP-I9ZK-x1zh1msspp4AtuiponfHTvTWeL1_GsZPzhEdw0AmBaTW8MoIA1EWm0wiOlr2omhRvsWUxu60MLbU5lZvsR8DuoZFEQ-AnEXzoRGf1kXv_zv6DqA_gaZP0QFnGb2FrMb8tDuGJ-7m4qeY92JRfv_Vg-9NwNJ7g3UVyTC0fUyubdtqrlewOZJ0aBQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_aBhJw4BstDIaR4AKySO00iQ8IobFp1UqFYJN28xw7niZNydZ0bPxR_I-85zQZRdpuO3CqKruJ0_ye36ffD-CNyk0hrSJ-F-l44jLHTW4z7gtpbOkt6cxANpFNJvn-vvq2BL-7szBUVtntiWGjdrWlGPkHSYTVMlXJp5NTTqRRlFztGDRaVOyUv87RY2s-jr7g630rxNbm7sY2n5MKcIM-14xL7x0uKfNFatFYUU4OXWylMyotsjwt8zzNRSbwO9omhcX1DlVsVIK-uZIlCgBedxluJQlKA1UKxht90gLNlRDSUeiRJaipuyRqOKk3EKnilIlQQ5HxiwU1uOxNTUWZpsH34ltCjQWL958kbdB9Ww_-s3_tIdyfG9nscysVj2CprB7Dvb9aLz6BQxpsu2cwalASPkJFPCN6ODqkz9CeZxSbq9w5WuRTNqYCK0ZkptY0VC7Ojipm2HcqbWEkW5VjtWebJjSfYKMKZe8p7N3Ikz6DlaquylVgMisKpRI3cBRnFbkZJj5VhXXogkpr0wjiDgPazjuyEzHIsb7sJU2w0QgbTbDRFxG8639y0rYjuW7yKgJLm0NUF3rvh6AkNZpnaJHgrdcX0NZfTOCgELGIYK0DlJ7vao3u0RTB634UtyPKMZmqrM8aTeEFQS02BxGwK-ZkNIcIXyJ43wH78iZXPs7za5f0Cu5s734d6_FosrMGd9siD6qqfgErs-lZ-RJu25-zo2a6HoSWwcFN4_0PH4h5Lg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD6CMk3jYfeJjI150vayyaK10yR-mCYGVKtAVcWGxJtx7BghTQk0ZbCftn-3c3JjnQRvPOypquwmTvMdn6vPB_BOJSaVVhG_i3Q8dLHjJrEx96k0NvOWdGZFNhFPJsnRkZouwe_2LAyVVbZ7YrVRu8JSjHxTEmG1jFS46ZuqiOnO6PPZOScCKUq0tmwaNUL2sl-X6L2Vn8Y7-KrfCzHa_b79lTcEA9yg_zXn0nuHy4t9Glk0XJSTQ9e30hkVpXESZUkSJSIW-B3tlNTi2oeqb1SIfrqSGQoDXncZVpIIxaYHK9PtL1sHXQoDjZcqwKPQPwtRb7cp1erc3kBEilNeQg1FzK8WlOKyNwWVaJoS35Kv6TUW7N9_UraVJhw9-o__w8fwsDG_2VYtL09gKcufwupfTRmfwQkN1n01GLUuqT6qWnlGxHF0fJ-hpc8oape7S7TVZ2yfSq8Y0ZxaU1IhOTvNmWEHVPTCSOpyxwrPdk3VloKNc5TK53B4J0_6Anp5kWdrwGScpkqFbuAoAisSMwx9pFLr0DmV1kYB9Fs8aNv0aifKkB_6uss0QUgjhDRBSF8F8KH7yVndqOS2yWsIMm1OUJHow2-C0tdouKGtgrfeWEBedzGBg0L0RQDrLbh0s9-VukNWAG-7UdyoKPtk8qy4KDUFHgQ13xwEwG6YE9McooIJ4GML8uub3Pg4L29d0hu4jzDX--PJ3jo8qKs_qNz6FfTms4vsNdyzP-en5WyjkWAGx3cN-D8j1INM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network+Modeling+for+Groundwater+Level+Forecasting+in+a+River+Island+of+Eastern+India&rft.jtitle=Water+resources+management&rft.au=Mohanty%2C+Sheelabhadra&rft.au=Jha%2C+Madan+K&rft.au=Kumar%2C+Ashwani&rft.au=Sudheer%2C+K.+P&rft.date=2010-07-01&rft.pub=Dordrecht+%3A+Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=24&rft.issue=9&rft.spage=1845&rft.epage=1865&rft_id=info:doi/10.1007%2Fs11269-009-9527-x&rft.externalDocID=US201301851286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon