Abelian logic gates
An abelian processor is an automaton whose output is independent of the order of its inputs. Bond and Levine have proved that a network of abelian processors performs the same computation regardless of processing order (subject only to a halting condition). We prove that any finite abelian processor...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
10.04.2018
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An abelian processor is an automaton whose output is independent of the order of its inputs. Bond and Levine have proved that a network of abelian processors performs the same computation regardless of processing order (subject only to a halting condition). We prove that any finite abelian processor can be emulated by a network of certain very simple abelian processors, which we call gates. The most fundamental gate is a "toppler", which absorbs input particles until their number exceeds some given threshold, at which point it topples, emitting one particle and returning to its initial state. With the exception of an adder gate, which simply combines two streams of particles, each of our gates has only one input wire. Our results can be reformulated in terms of the functions computed by processors, and one consequence is that any increasing function from N^k to N^l that is the sum of a linear function and a periodic function can be expressed in terms of (possibly nested) sums of floors of quotients by integers. |
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1511.00422 |