Polytopic Autoencoders with Smooth Clustering for Reduced-order Modelling of Flows
With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the application of autoencoders to reduced-order models. We propose a polytopic autoencoder architecture that includes a lightweight nonlinear encode...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
19.01.2024
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the application of autoencoders to reduced-order models. We propose a polytopic autoencoder architecture that includes a lightweight nonlinear encoder, a convex combination decoder, and a smooth clustering network. Supported by several proofs, the model architecture ensures that all reconstructed states lie within a polytope, accompanied by a metric indicating the quality of the constructed polytopes, referred to as polytope error. Additionally, it offers a minimal number of convex coordinates for polytopic linear-parameter varying systems while achieving acceptable reconstruction errors compared to proper orthogonal decomposition (POD). To validate our proposed model, we conduct simulations involving two flow scenarios with the incompressible Navier-Stokes equation. Numerical results demonstrate the guaranteed properties of the model, low reconstruction errors compared to POD, and the improvement in error using a clustering network. |
|---|---|
| AbstractList | With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the application of autoencoders to reduced-order models. We propose a polytopic autoencoder architecture that includes a lightweight nonlinear encoder, a convex combination decoder, and a smooth clustering network. Supported by several proofs, the model architecture ensures that all reconstructed states lie within a polytope, accompanied by a metric indicating the quality of the constructed polytopes, referred to as polytope error. Additionally, it offers a minimal number of convex coordinates for polytopic linear-parameter varying systems while achieving acceptable reconstruction errors compared to proper orthogonal decomposition (POD). To validate our proposed model, we conduct simulations involving two flow scenarios with the incompressible Navier-Stokes equation. Numerical results demonstrate the guaranteed properties of the model, low reconstruction errors compared to POD, and the improvement in error using a clustering network. |
| Author | Kim, Yongho Heiland, Jan |
| Author_xml | – sequence: 1 givenname: Jan surname: Heiland fullname: Heiland, Jan – sequence: 2 givenname: Yongho surname: Kim fullname: Kim, Yongho |
| BookMark | eNotjstOwzAURC0EEqX0A9hZYp1yfW3nsawiCkhFoNJ95foBqUJusRMKf08QrM5ijmbmgp121HnGrgTMVak13Jj41XzOUYGYC8gRTtgEpRRZqRDP2SylPQBgXqDWcsLWz9R-93RoLF8MPfnOkvMx8WPTv_GXd6IRdTuk3seme-WBIl97N1jvMoqjyR9Hv21_Mwp82dIxXbKzYNrkZ_-css3ydlPfZ6unu4d6scqMRpkZMZ5QJgQEoxBEAGPBgXDeO8h3WlYOql0ZTA5WeVBoqiCEkuCcCjYHOWXXf7WHSB-DT_12T0PsxsUtVqJQopBayh8HQVNp |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2401.10620 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a523-a10264aff20a4201f0ac0d01deed06b539d09b8fa60c4e042a9f11430dd4fc603 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:18:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a523-a10264aff20a4201f0ac0d01deed06b539d09b8fa60c4e042a9f11430dd4fc603 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2917417353?pq-origsite=%requestingapplication% |
| PQID | 2917417353 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2917417353 |
| PublicationCentury | 2000 |
| PublicationDate | 20240119 |
| PublicationDateYYYYMMDD | 2024-01-19 |
| PublicationDate_xml | – month: 01 year: 2024 text: 20240119 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8578274 |
| SecondaryResourceType | preprint |
| Snippet | With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Clustering Errors Fluid flow Incompressible flow Neural networks Polytopes Proper Orthogonal Decomposition Reconstruction Reduced order models |
| Title | Polytopic Autoencoders with Smooth Clustering for Reduced-order Modelling of Flows |
| URI | https://www.proquest.com/docview/2917417353 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgBYmJb_FRKg-spk7spM2EoGoFA1XUdihT5Ti2VKnUJUkL_HvuQgoDEgtj5CXy2ffenU_vEXINqGKiFE0zgCswmciQKRNoFsBp0lpYhNzSbKI9GHQmkyiuGm55NVa5yYllok6dxh55y4e6QnptEYjb5StD1yh8Xa0sNLZJHZXKZI3U73uDePjdZfHDNnBm8fWcWYp3tVT2PlvfAJB5ULmGPv-VhEtk6e__958OSD1WS5Mdki2zOCK75USnzo_JMHbzj8ItZ5rerQqHepU4s0yx8UpHLw4iRLvzFeokAHpR4K50iDKuJmWlHCdFl7RSsJs6S_tz95afkHG_N-4-sMpAgSmoL5kC8hBKZa3PlQSgt1xpnnIvBVzkYRIICFKUdKwKuZYGbq-KLJRHgqeptDrk4pTUFm5hzgg1xnQ87QklQi0tkIxEYDFiEPCBkPFz0tjs0LS6BPn0Z3su_l6-JHs-cAXsbHhRg9SKbGWuyI5eF7M8a1YxbeJY5gi-4sen-PkTbkau0Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4oaPTkOz5Q96DHyra7LfRgjEEJhEcIcsATWba7CQlSbHnIj_I_OluoHky8cfDcpOl2vs73zez2G4AbZBXlB2ZoBmoFi_e5ZwnlSstFNEnJtKHcZNhEodksdrt-awM-039hzLHKNCcmiToIpemR5x2sK7hdYC57GL9bZmqU2V1NR2gsYVFTizmWbPF99Qnje-s45edOqWKtpgpYAosuSyCjelxo7VDBkf00FZIG1A6QLKjXdxk-ud8vauFRyRVCWvgaawZGg4Br6VGGt92ELEesFzOQbVUbrdfvpo7jFVCis-XuaeIVlhfRx2B2h7xpY6HsOfRXzk-IrLz3z17BPi5djFV0ABtqdAjbyXlVGR9BuxUOF5NwPJDkcToJjRunOZFNTFuZvLyFiD9SGk6NCwRyM0FlTtrGpFYFVmI2SswMuMSOnISalIfhPD6GzjpWcQKZUThSp0CUUkVb2kwwT3KNEqrPTKmljJxBuUnPIJcGpLf6xOPeTzTO_758DTuVTqPeq1ebtQvYdVAVmR6O7ecgM4mm6hK25GwyiKOrFZwI9NYcvS8TQggG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polytopic+Autoencoders+with+Smooth+Clustering+for+Reduced-order+Modelling+of+Flows&rft.jtitle=arXiv.org&rft.au=Heiland%2C+Jan&rft.au=Kim%2C+Yongho&rft.date=2024-01-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2401.10620 |