Polytopic Autoencoders with Smooth Clustering for Reduced-order Modelling of Flows

With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the application of autoencoders to reduced-order models. We propose a polytopic autoencoder architecture that includes a lightweight nonlinear encode...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Heiland, Jan, Kim, Yongho
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 19.01.2024
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the application of autoencoders to reduced-order models. We propose a polytopic autoencoder architecture that includes a lightweight nonlinear encoder, a convex combination decoder, and a smooth clustering network. Supported by several proofs, the model architecture ensures that all reconstructed states lie within a polytope, accompanied by a metric indicating the quality of the constructed polytopes, referred to as polytope error. Additionally, it offers a minimal number of convex coordinates for polytopic linear-parameter varying systems while achieving acceptable reconstruction errors compared to proper orthogonal decomposition (POD). To validate our proposed model, we conduct simulations involving two flow scenarios with the incompressible Navier-Stokes equation. Numerical results demonstrate the guaranteed properties of the model, low reconstruction errors compared to POD, and the improvement in error using a clustering network.
AbstractList With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the application of autoencoders to reduced-order models. We propose a polytopic autoencoder architecture that includes a lightweight nonlinear encoder, a convex combination decoder, and a smooth clustering network. Supported by several proofs, the model architecture ensures that all reconstructed states lie within a polytope, accompanied by a metric indicating the quality of the constructed polytopes, referred to as polytope error. Additionally, it offers a minimal number of convex coordinates for polytopic linear-parameter varying systems while achieving acceptable reconstruction errors compared to proper orthogonal decomposition (POD). To validate our proposed model, we conduct simulations involving two flow scenarios with the incompressible Navier-Stokes equation. Numerical results demonstrate the guaranteed properties of the model, low reconstruction errors compared to POD, and the improvement in error using a clustering network.
Author Kim, Yongho
Heiland, Jan
Author_xml – sequence: 1
  givenname: Jan
  surname: Heiland
  fullname: Heiland, Jan
– sequence: 2
  givenname: Yongho
  surname: Kim
  fullname: Kim, Yongho
BookMark eNotjstOwzAURC0EEqX0A9hZYp1yfW3nsawiCkhFoNJ95foBqUJusRMKf08QrM5ijmbmgp121HnGrgTMVak13Jj41XzOUYGYC8gRTtgEpRRZqRDP2SylPQBgXqDWcsLWz9R-93RoLF8MPfnOkvMx8WPTv_GXd6IRdTuk3seme-WBIl97N1jvMoqjyR9Hv21_Mwp82dIxXbKzYNrkZ_-css3ydlPfZ6unu4d6scqMRpkZMZ5QJgQEoxBEAGPBgXDeO8h3WlYOql0ZTA5WeVBoqiCEkuCcCjYHOWXXf7WHSB-DT_12T0PsxsUtVqJQopBayh8HQVNp
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2401.10620
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a523-a10264aff20a4201f0ac0d01deed06b539d09b8fa60c4e042a9f11430dd4fc603
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:18:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-a10264aff20a4201f0ac0d01deed06b539d09b8fa60c4e042a9f11430dd4fc603
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2917417353?pq-origsite=%requestingapplication%
PQID 2917417353
PQPubID 2050157
ParticipantIDs proquest_journals_2917417353
PublicationCentury 2000
PublicationDate 20240119
PublicationDateYYYYMMDD 2024-01-19
PublicationDate_xml – month: 01
  year: 2024
  text: 20240119
  day: 19
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8578274
SecondaryResourceType preprint
Snippet With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Clustering
Errors
Fluid flow
Incompressible flow
Neural networks
Polytopes
Proper Orthogonal Decomposition
Reconstruction
Reduced order models
Title Polytopic Autoencoders with Smooth Clustering for Reduced-order Modelling of Flows
URI https://www.proquest.com/docview/2917417353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF20VfDkN37UsgevsZtsuumeREuLgpbQ9lBPZbMfUKhNTdKq_96ZGPUgePGWEAhhlp335u3kDSGXVhhfi3biJSySXqgSuPLRi1CrRHE0WPfLH4UfosGgM5nIuBLc8qqt8isnlonapBo18lYAdUXoR7zNr5cvHk6NwtPVaoTGJqmjU1lYI_Xb3iAefqssgYiAM_PP48zSvKulsrfZ-gqAzIfKVQTsVxIukaW_-99v2iP1WC1ttk827OKAbJcdnTo_JMM4nb8X6XKm6c2qSNGvEnuWKQqvdPScwgrR7nyFPgmAXhS4Kx2ijas1XmnHSXFKWmnYTVNH-_P0NT8i435v3L3zqgEKnoL60lNAHkSonAuYCgHoHVOaGeYbwEUmkjaXhsmk45RgOrSwe5V0UB5xZkzotGD8mNQW6cKeECq4lQkEU6G9HFNCIc1j3HY0vNtpeUoaXxGaVpsgn_6E5-zvx-dkJwCugMqGLxukVmQre0G29LqY5VmzWtMmtmWO4C6-f4yfPgCE2q_l
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4oaPTkOz5Q96DHyrZblvZgjEEJhEcIcsAT2W53ExKkSHnIj_I_OluoHky8cfDWpMkm2_k638zs7DcAN4qHtuSFwApo0bdcEeCTbbQIpQgEMwLrdnJRuF5sNr1u129twGd6F8a0VaY-MXHUYSRNjTzvYF7h2kVWYA-jd8tMjTKnq-kIjSUsamoxx5Qtvq8-oX1vHaf83ClVrNVUAUtg0mUJZFTuCq0dKlxkP02FpCG1QyQLyoMC80PqB54WnEpXIaSFrzFnYDQMXS05ZbjsJmRdxLqXgWyr2mi9fhd1HF7EEJ0tT08TrbC8GH_0Z3fImzYmytyhv3x-QmTlvX_2CfZx62KkxgewoYaHsJ30q8r4CNqtaLCYRKO-JI_TSWTUOE1HNjFlZfLyFiH-SGkwNSoQyM0EI3PSNiK1KrQSsVFiZsAlcuQk0qQ8iObxMXTWsYsTyAyjoToFwpnyA7SdMOJ5VHBhgljKlCdxbS39M8ilBumtfvG492ON879fX8NOpdOo9-rVZu0Cdh2MikwNx_ZzkJmMp-oStuRs0o_HVys4Eeit2XpfUscJGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polytopic+Autoencoders+with+Smooth+Clustering+for+Reduced-order+Modelling+of+Flows&rft.jtitle=arXiv.org&rft.au=Heiland%2C+Jan&rft.au=Kim%2C+Yongho&rft.date=2024-01-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2401.10620