Guidance Design for Escape Flight Vehicle Using Evolution Strategy Enhanced Deep Reinforcement Learning

Guidance commands of flight vehicles are a series of data sets with fixed time intervals, thus guidance design constitutes a sequential decision problem and satisfies the basic conditions for using deep reinforcement learning (DRL). In this paper, we consider the scenario where the escape flight veh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Hu, Xiao, Wang, Tianshu, Gong, Min, Yang, Shaoshi
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 04.05.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Guidance commands of flight vehicles are a series of data sets with fixed time intervals, thus guidance design constitutes a sequential decision problem and satisfies the basic conditions for using deep reinforcement learning (DRL). In this paper, we consider the scenario where the escape flight vehicle (EFV) generates guidance commands based on DRL and the pursuit flight vehicle (PFV) generates guidance commands based on the proportional navigation method. For the EFV, the objective of the guidance design entails progressively maximizing the residual velocity, subject to the constraint imposed by the given evasion distance. Thus an irregular dynamic max-min problem of extremely large-scale is formulated, where the time instant when the optimal solution can be attained is uncertain and the optimum solution depends on all the intermediate guidance commands generated before. For solving this problem, a two-step strategy is conceived. In the first step, we use the proximal policy optimization (PPO) algorithm to generate the guidance commands of the EFV. The results obtained by PPO in the global search space are coarse, despite the fact that the reward function, the neural network parameters and the learning rate are designed elaborately. Therefore, in the second step, we propose to invoke the evolution strategy (ES) based algorithm, which uses the result of PPO as the initial value, to further improve the quality of the solution by searching in the local space. Simulation results demonstrate that the proposed guidance design method based on the PPO algorithm is capable of achieving a residual velocity of 67.24 m/s, higher than the residual velocities achieved by the benchmark soft actor-critic and deep deterministic policy gradient algorithms. Furthermore, the proposed ES-enhanced PPO algorithm outperforms the PPO algorithm by 2.7\%, achieving a residual velocity of 69.04 m/s.
AbstractList Guidance commands of flight vehicles are a series of data sets with fixed time intervals, thus guidance design constitutes a sequential decision problem and satisfies the basic conditions for using deep reinforcement learning (DRL). In this paper, we consider the scenario where the escape flight vehicle (EFV) generates guidance commands based on DRL and the pursuit flight vehicle (PFV) generates guidance commands based on the proportional navigation method. For the EFV, the objective of the guidance design entails progressively maximizing the residual velocity, subject to the constraint imposed by the given evasion distance. Thus an irregular dynamic max-min problem of extremely large-scale is formulated, where the time instant when the optimal solution can be attained is uncertain and the optimum solution depends on all the intermediate guidance commands generated before. For solving this problem, a two-step strategy is conceived. In the first step, we use the proximal policy optimization (PPO) algorithm to generate the guidance commands of the EFV. The results obtained by PPO in the global search space are coarse, despite the fact that the reward function, the neural network parameters and the learning rate are designed elaborately. Therefore, in the second step, we propose to invoke the evolution strategy (ES) based algorithm, which uses the result of PPO as the initial value, to further improve the quality of the solution by searching in the local space. Simulation results demonstrate that the proposed guidance design method based on the PPO algorithm is capable of achieving a residual velocity of 67.24 m/s, higher than the residual velocities achieved by the benchmark soft actor-critic and deep deterministic policy gradient algorithms. Furthermore, the proposed ES-enhanced PPO algorithm outperforms the PPO algorithm by 2.7\%, achieving a residual velocity of 69.04 m/s.
Author Yang, Shaoshi
Wang, Tianshu
Gong, Min
Hu, Xiao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Hu
  fullname: Hu, Xiao
– sequence: 2
  givenname: Tianshu
  surname: Wang
  fullname: Wang, Tianshu
– sequence: 3
  givenname: Min
  surname: Gong
  fullname: Gong, Min
– sequence: 4
  givenname: Shaoshi
  surname: Yang
  fullname: Yang, Shaoshi
BookMark eNotzctOwzAUBFALgUQp_QB2llin2L5xHktU0oJUCQkK28qP69RVcEKcVPD3BMFsZjVnrsh5aAMScsPZMi2kZHeq__KnpUiZXDLIOT8jMwHAkyIV4pIsYjwyxkSWCylhRurN6K0KBukDRl8H6tqeVtGoDum68fVhoO948KZB-hZ9qGl1aptx8G2gr0OvBqy_aRUOv4KdCOzoC_owIQY_MAx0i6oP0-6aXDjVRFz895zs1tVu9ZhsnzdPq_ttoqSApCw0KMfRai1YxlA4Lk2phc2zwjpXMJtrwVPDAK0TTmYgDWhZppnRFjnCnNz-sV3ffo4Yh_2xHfswPe6BSTEFOMAPzpxbLw
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2405.03711
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a523-98b3af1edbb2060e2f15c9b2d768dff80d7b214c03edf2f5635c3b5946cbde1e3
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:13:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-98b3af1edbb2060e2f15c9b2d768dff80d7b214c03edf2f5635c3b5946cbde1e3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/3052222313?pq-origsite=%requestingapplication%
PQID 3052222313
PQPubID 2050157
ParticipantIDs proquest_journals_3052222313
PublicationCentury 2000
PublicationDate 20240504
PublicationDateYYYYMMDD 2024-05-04
PublicationDate_xml – month: 05
  year: 2024
  text: 20240504
  day: 04
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8689551
SecondaryResourceType preprint
Snippet Guidance commands of flight vehicles are a series of data sets with fixed time intervals, thus guidance design constitutes a sequential decision problem and...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Commands
Deep learning
Evolution
Flight
Flight vehicles
Machine learning
Neural networks
Optimization
Proportional navigation
Title Guidance Design for Escape Flight Vehicle Using Evolution Strategy Enhanced Deep Reinforcement Learning
URI https://www.proquest.com/docview/3052222313
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagBYmJt3iUygOr28RO0mRCAlJgoIpKhcpU-XGhlVBakraCf4_tujAgMTFbsiz7fHff-fN3CF0qiJTOGhThOQAJeOwRAZQRCTQRnTBiIKRtNtHp9eLhMMnc9-jK0SrXPtE66pXas-FtayfcVlNpKuZtbaXURDafXc3eiekhZd5aXUONTVQ3X7w1FKtnD4_Zy3fNhUYdnUGz1eOmlfJq8_JjsmzpsBa2jHid_8sl2zjT3f3fFe7plfEZlPtoA4oDtG3ZnrI6RK93i4kyx41vLYED68wVp5XhQuHum4Hr-BnGxqKwpRTgdOksFDs120-cFmNLHtBTwAz3wSqwSltsxE609fUIDbrp4OaeuI4LhGtASpJYMJ77oISgXuQBzf1QJoIqjUlUnsee6gjqB9JjoHKa65MMJRNhEkRSKPCBHaNaMS3gBGENq3IegvSTkAYhE4JD4kmNxSlX0gP_FDXWmzhyt6Ya_ezZ2d_D52iH6uTCEg-DBqrNywVcoC25nE-qsonq12kv6zcNj_Op6YzgC4M-xCk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ6gaPTkOz5Qe9Dj4rbdXejBeBBQIxKixHgjfcwiiUFkFfVH-R9ty6IHE28ePDdpujuvb6ZfZwAODCbGogYTyBQxiGQ1DBQyHmhkQlXihKPSfthEpdWq3t2JdgE-pm9hHK1y6hO9ozaP2tXIj6xeMhfLKD8ZPgVuapS7XZ2O0JioxSW-v9qULTu-qFn5HjLWqHdOz4N8qkAgbdIViKriMqVolGJhEiJLaayFYsbibpOm1dBUFKORDjmalKX2tLHmKhZRopVBitxuOwNFiyKo8EzBm6-SDksqFqDzyd2p7xR2JEdv_XHZRs247Hrj0R8e34exxtI_-wHLUGzLIY5WoICDVZj3bFWdrUHv7KVvnLqSmiegEIu8ST1zXC7SeHDlBnKL984iiKdEkPo4tzCSd-N9J_XBvSc_2C1wSK7Rd5DVvlhK8qazvXXo_MWnbcDs4HGAm0BsWpjKGDUVMYtirpREEeooEUwaHSLdgtJUSt3c6rPut4i2f1_eh4XzzlWz27xoXe7AIrNAyZMooxLMPo9ecBfm9Pi5n432vIYR6P6xQD8BPw8Srg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+Design+for+Escape+Flight+Vehicle+Using+Evolution+Strategy+Enhanced+Deep+Reinforcement+Learning&rft.jtitle=arXiv.org&rft.au=Hu%2C+Xiao&rft.au=Wang%2C+Tianshu&rft.au=Gong%2C+Min&rft.au=Yang%2C+Shaoshi&rft.date=2024-05-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2405.03711