Lower Bounds on Stabilizer Rank
The stabilizer rank of a quantum state \(\psi\) is the minimal \(r\) such that \(\left| \psi \right \rangle = \sum_{j=1}^r c_j \left|\varphi_j \right\rangle\) for \(c_j \in \mathbb{C}\) and stabilizer states \(\varphi_j\). The running time of several classical simulation methods for quantum circuits...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
10.02.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The stabilizer rank of a quantum state \(\psi\) is the minimal \(r\) such that \(\left| \psi \right \rangle = \sum_{j=1}^r c_j \left|\varphi_j \right\rangle\) for \(c_j \in \mathbb{C}\) and stabilizer states \(\varphi_j\). The running time of several classical simulation methods for quantum circuits is determined by the stabilizer rank of the \(n\)-th tensor power of single-qubit magic states. We prove a lower bound of \(\Omega(n)\) on the stabilizer rank of such states, improving a previous lower bound of \(\Omega(\sqrt{n})\) of Bravyi, Smith and Smolin (arXiv:1506.01396). Further, we prove that for a sufficiently small constant \(\delta\), the stabilizer rank of any state which is \(\delta\)-close to those states is \(\Omega(\sqrt{n}/\log n)\). This is the first non-trivial lower bound for approximate stabilizer rank. Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of \(\mathbb{F}_2^n\), and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolensky low degree polynomial approximations and correlation bounds against the majority function. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2106.03214 |