Lower Bounds on Stabilizer Rank

The stabilizer rank of a quantum state \(\psi\) is the minimal \(r\) such that \(\left| \psi \right \rangle = \sum_{j=1}^r c_j \left|\varphi_j \right\rangle\) for \(c_j \in \mathbb{C}\) and stabilizer states \(\varphi_j\). The running time of several classical simulation methods for quantum circuits...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Peleg, Shir, Shpilka, Amir, Ben Lee Volk
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 10.02.2022
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The stabilizer rank of a quantum state \(\psi\) is the minimal \(r\) such that \(\left| \psi \right \rangle = \sum_{j=1}^r c_j \left|\varphi_j \right\rangle\) for \(c_j \in \mathbb{C}\) and stabilizer states \(\varphi_j\). The running time of several classical simulation methods for quantum circuits is determined by the stabilizer rank of the \(n\)-th tensor power of single-qubit magic states. We prove a lower bound of \(\Omega(n)\) on the stabilizer rank of such states, improving a previous lower bound of \(\Omega(\sqrt{n})\) of Bravyi, Smith and Smolin (arXiv:1506.01396). Further, we prove that for a sufficiently small constant \(\delta\), the stabilizer rank of any state which is \(\delta\)-close to those states is \(\Omega(\sqrt{n}/\log n)\). This is the first non-trivial lower bound for approximate stabilizer rank. Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of \(\mathbb{F}_2^n\), and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolensky low degree polynomial approximations and correlation bounds against the majority function.
AbstractList The stabilizer rank of a quantum state \(\psi\) is the minimal \(r\) such that \(\left| \psi \right \rangle = \sum_{j=1}^r c_j \left|\varphi_j \right\rangle\) for \(c_j \in \mathbb{C}\) and stabilizer states \(\varphi_j\). The running time of several classical simulation methods for quantum circuits is determined by the stabilizer rank of the \(n\)-th tensor power of single-qubit magic states. We prove a lower bound of \(\Omega(n)\) on the stabilizer rank of such states, improving a previous lower bound of \(\Omega(\sqrt{n})\) of Bravyi, Smith and Smolin (arXiv:1506.01396). Further, we prove that for a sufficiently small constant \(\delta\), the stabilizer rank of any state which is \(\delta\)-close to those states is \(\Omega(\sqrt{n}/\log n)\). This is the first non-trivial lower bound for approximate stabilizer rank. Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of \(\mathbb{F}_2^n\), and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolensky low degree polynomial approximations and correlation bounds against the majority function.
Author Shpilka, Amir
Ben Lee Volk
Peleg, Shir
Author_xml – sequence: 1
  givenname: Shir
  surname: Peleg
  fullname: Peleg, Shir
– sequence: 2
  givenname: Amir
  surname: Shpilka
  fullname: Shpilka, Amir
– sequence: 3
  fullname: Ben Lee Volk
BookMark eNotjs1KxDAURoMoOI7zAK4suG69vTdJc5c6-AcFQWc_JGkKHYdEm6mKT29BVx-cxTnfmTiOKQYhLmqopFEKru34PXxWWIOugLCWR2KBRHVpJOKpWOW8AwDUDSpFC3HZpq8wFrdpil0uUixeD9YN--Fnhi82vp2Lk97uc1j971Js7u8268eyfX54Wt-0pVVIpQyuRguOFXeayavQ9EReQmAvdZDMNpiuYY89W--096iA2DgOZv6iaCmu_rTvY_qYQj5sd2ka41zcoiLDYKgh-gUn-j_D
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2106.03214
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a523-4eb12a0b959d693c5e7f33c40e9c46e499ae8d79c2f9acb6cc250398b9e802653
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:24:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-4eb12a0b959d693c5e7f33c40e9c46e499ae8d79c2f9acb6cc250398b9e802653
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2538908373?pq-origsite=%requestingapplication%
PQID 2538908373
PQPubID 2050157
ParticipantIDs proquest_journals_2538908373
PublicationCentury 2000
PublicationDate 20220210
PublicationDateYYYYMMDD 2022-02-10
PublicationDate_xml – month: 02
  year: 2022
  text: 20220210
  day: 10
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7849205
SecondaryResourceType preprint
Snippet The stabilizer rank of a quantum state \(\psi\) is the minimal \(r\) such that \(\left| \psi \right \rangle = \sum_{j=1}^r c_j \left|\varphi_j \right\rangle\)...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Boolean algebra
Boolean functions
Complexity theory
Lower bounds
Mathematical analysis
Polynomials
Quadratic equations
Qubits (quantum computing)
Subspaces
Tensors
Title Lower Bounds on Stabilizer Rank
URI https://www.proquest.com/docview/2538908373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60VfDkGx-17sFr2rDZ15yESotCLUstUk8lm2ShCLt1txbx1zvZbvUgePKSQ3LJ88tM8s18ADeJpmsmkZLxUBrmpVwy6WFABdkKmktPV7FVz8NwNIqmU4zr8OiyplVuMLEC6nW2Z8vbJhDu6lzZF_OuS-cUyXoIxe3ijVkNKfvXWgtqbEPTJt7iDWjGD4_xy_ebixuEZEGL9edmlcqrK4uP-apDfk_Q4Vaz5xckV_fMYP9_e3hAPZMLUxzClsmOYLdie6ryGK6HVhvN6VlJpdLJM4dMTkuS_aTKscxeT2Ay6E_u7lmtlMAkOZLMI8B1JU_QRx2gUL4JUyGUxw0qLzDk1EgT6RCVm6JUiaVK-1xglKCJaFJ8cQqNLM_MGTjaIOea3CaJiad0kHCl0eWoUhFFSgXn0NoMflbv9nL2M9aLv5svYc-14QNWUIW3oLEs3s0V7KjVcl4WbWj2-qN43Lb8y6d2vXhfxW2onQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5VLQgm3uJRaAYY01qOm8QDQuJRtWpaVahCZYoc25EqpLQkpTz-E_-Rc9rAgMTWgSVDsjjnu8_32Xf-AM4jhctMJIRNPKFtFhNhC8ZdfGCuoIhgKu-tegi8ft8fjfigBJ9FL4wpqywwMQdqNZFmj7xBMTI55gueczV9to1qlDldLSQ0Fm7R1e-vSNmyy84tzu8Fpa274U3bXqoK2AJJl80QnKggEW9y5XJHNrUXO45kRHPJXI0EQGhfeVzSmAsZmbLiJnG4H3HtI18xIhGI-BWGvk7KUBl0eoPH700d6nqYojuL09P8rrCGSN_G8zoSK7dOjCjQL8zPF7LW1j8zwTb-upjqdAdKOtmF9bxeVWZ7UAuMupt1bUShMmuSWJg0mzLfD3x5L5KnfRiuYkgHUE4miT4ES2lOiELiJ3jEpHIjIhWnhMvY8X0p3SOoFtYNl_GahT-mPf77cw022sNeEAadfvcENqlphjDyMKQK5Vn6ok9hTc5n4yw9W_qGBeGKp-ILHV_2JQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+Bounds+on+Stabilizer+Rank&rft.jtitle=arXiv.org&rft.au=Peleg%2C+Shir&rft.au=Shpilka%2C+Amir&rft.au=Ben+Lee+Volk&rft.date=2022-02-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2106.03214