Adversarial Constrained Bidding via Minimax Regret Optimization with Causality-Aware Reinforcement Learning

The proliferation of the Internet has led to the emergence of online advertising, driven by the mechanics of online auctions. In these repeated auctions, software agents participate on behalf of aggregated advertisers to optimize for their long-term utility. To fulfill the diverse demands, bidding s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Wang, Haozhe, Du, Chao, Fang, Panyan, He, Li, Wang, Liang, Zheng, Bo
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.06.2023
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The proliferation of the Internet has led to the emergence of online advertising, driven by the mechanics of online auctions. In these repeated auctions, software agents participate on behalf of aggregated advertisers to optimize for their long-term utility. To fulfill the diverse demands, bidding strategies are employed to optimize advertising objectives subject to different spending constraints. Existing approaches on constrained bidding typically rely on i.i.d. train and test conditions, which contradicts the adversarial nature of online ad markets where different parties possess potentially conflicting objectives. In this regard, we explore the problem of constrained bidding in adversarial bidding environments, which assumes no knowledge about the adversarial factors. Instead of relying on the i.i.d. assumption, our insight is to align the train distribution of environments with the potential test distribution meanwhile minimizing policy regret. Based on this insight, we propose a practical Minimax Regret Optimization (MiRO) approach that interleaves between a teacher finding adversarial environments for tutoring and a learner meta-learning its policy over the given distribution of environments. In addition, we pioneer to incorporate expert demonstrations for learning bidding strategies. Through a causality-aware policy design, we improve upon MiRO by distilling knowledge from the experts. Extensive experiments on both industrial data and synthetic data show that our method, MiRO with Causality-aware reinforcement Learning (MiROCL), outperforms prior methods by over 30%.
AbstractList The proliferation of the Internet has led to the emergence of online advertising, driven by the mechanics of online auctions. In these repeated auctions, software agents participate on behalf of aggregated advertisers to optimize for their long-term utility. To fulfill the diverse demands, bidding strategies are employed to optimize advertising objectives subject to different spending constraints. Existing approaches on constrained bidding typically rely on i.i.d. train and test conditions, which contradicts the adversarial nature of online ad markets where different parties possess potentially conflicting objectives. In this regard, we explore the problem of constrained bidding in adversarial bidding environments, which assumes no knowledge about the adversarial factors. Instead of relying on the i.i.d. assumption, our insight is to align the train distribution of environments with the potential test distribution meanwhile minimizing policy regret. Based on this insight, we propose a practical Minimax Regret Optimization (MiRO) approach that interleaves between a teacher finding adversarial environments for tutoring and a learner meta-learning its policy over the given distribution of environments. In addition, we pioneer to incorporate expert demonstrations for learning bidding strategies. Through a causality-aware policy design, we improve upon MiRO by distilling knowledge from the experts. Extensive experiments on both industrial data and synthetic data show that our method, MiRO with Causality-aware reinforcement Learning (MiROCL), outperforms prior methods by over 30%.
Author Wang, Haozhe
Du, Chao
Zheng, Bo
Fang, Panyan
Wang, Liang
He, Li
Author_xml – sequence: 1
  givenname: Haozhe
  surname: Wang
  fullname: Wang, Haozhe
– sequence: 2
  givenname: Chao
  surname: Du
  fullname: Du, Chao
– sequence: 3
  givenname: Panyan
  surname: Fang
  fullname: Fang, Panyan
– sequence: 4
  givenname: Li
  surname: He
  fullname: He, Li
– sequence: 5
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
– sequence: 6
  givenname: Bo
  surname: Zheng
  fullname: Zheng, Bo
BookMark eNotjU1PAjEUABujiYj8AG9NPC92-9rdcsSNXwmGxHAnr7uvWIQutgXRXy-JnuYymbli56EPxNhNKcbKaC3uMB79YSxBVGNRl6I6YwMJUBZGSXnJRimthRCyqqXWMGAf0-5AMWH0uOFNH1KO6AN1_N53nQ8rfvDIX33wWzzyN1pFyny-y37rfzD7PvAvn995g_uEG5-_i-kXRjqJPrg-trSlkPmMMIZT65pdONwkGv1zyBaPD4vmuZjNn16a6axALaFQSrWSBDiyZNu6daUy1hgnSpDo0IFwBDVaMVGTzoIkQlVaqcga21VoYchu_7K72H_uKeXlut_HcDoupZEahFYA8Atq7V4_
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2306.07106
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a523-444c2e03febebc7cf148b88f0132afaf30fe37ab0949db32eea41b24eb8bd6ab3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:21:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-444c2e03febebc7cf148b88f0132afaf30fe37ab0949db32eea41b24eb8bd6ab3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2825305433?pq-origsite=%requestingapplication%
PQID 2825305433
PQPubID 2050157
ParticipantIDs proquest_journals_2825305433
PublicationCentury 2000
PublicationDate 20230612
PublicationDateYYYYMMDD 2023-06-12
PublicationDate_xml – month: 06
  year: 2023
  text: 20230612
  day: 12
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8350878
SecondaryResourceType preprint
Snippet The proliferation of the Internet has led to the emergence of online advertising, driven by the mechanics of online auctions. In these repeated auctions,...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Advertising
Causality
Constraints
Distillation
Minimax technique
Online advertising
Optimization
Software agents
Synthetic data
Title Adversarial Constrained Bidding via Minimax Regret Optimization with Causality-Aware Reinforcement Learning
URI https://www.proquest.com/docview/2825305433
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTwIxGG0UNPHkHhckPXhtmJnOUk5GCEYP4AQ54Il83czEMOAMID_ftgx6MPHicdI5NF3et_Y9hG7B43ES8IjEUgMJo0QS4xxp0jbW1o9BacE2YhPJYMDG43ZaJdzKqq1yi4kOqOVM2Bx5y76xNGczpPRu_kGsapStrlYSGruoblkSAte69_KdYwnMNKKIboqZjrqrBcU6W9nuZ8vZ6XvxLwh2duXh8L8zOkL1FOaqOEY7Kj9B-66fU5Sn6N0JLZdgjxe2opxOCkJJ3MmktVZ4lQHuZ3k2hTUeKhN0L_CzQY9p9SwT2_ws7sKydH46uf-EQpkfHc-qcClFXFGzvp2h0UNv1H0kla4CARN2kjAMRaA8qs3-cZEIbSIizpi2VRfQoKmnFU2Am8CvLTkNlILQ50GoOOMyBk7PUS2f5eoCYWXcE6mZpyk1iBsJJrlQfqg9EWvGYnmJGtulm1R3o5z8rNvV38PX6MCKuxOnFNRAtUWxVDdoT6wWWVk0Ub3TG6TDptty85U-9dPXLzHrun4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED4BBcHEW7zxAKNFGjuJOyDEU1RAQdCBrfLjjCJEW5JS4EfxH7HdFgYkNgbmRJGdO9_5u9cHsCMjlWaxSmhqrKQ8yQx1lyNLa87bVlOJVosB2UTWaIj7-9rNGHyMemF8WeXIJgZDbTrax8j3fI-l003O2EH3mXrWKJ9dHVFoDNTiAt9fHWQr9-snTr67cXx22jw-p0NWASod6KKccx1jxKxbvdKZtg4PKCGszzlIKy2LLLJMKgd7akaxGFHyqoo5KqFMKhVznx2HCvfGP1QK3n2FdGK36yRhg9xpmBS2J4u3vO-Lrf2I0GqU_rD4wY2dzf6zHzAHlRvZxWIexrC9AFOhWlWXi_AYaKRL6Q8P8ZSjgegCDTnKjffFpJ9LcpW38yf5Rm7xocAeuXa28WnYdEp89Jkcy5cyoBB6-CoLdC-GKbI6BEzJcPDswxI0_2J7yzDR7rRxBQi6y5exIrKMOX-SaGGUxiq3kU6tEKlZhY2RpFrDk1-2vsW09vvjbZg-b15dti7rjYt1mPE09jRwIm3ARK94wU2Y1P1eXhZbQcsItP5YqJ9LRRai
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+Constrained+Bidding+via+Minimax+Regret+Optimization+with+Causality-Aware+Reinforcement+Learning&rft.jtitle=arXiv.org&rft.au=Wang%2C+Haozhe&rft.au=Du%2C+Chao&rft.au=Fang%2C+Panyan&rft.au=He%2C+Li&rft.date=2023-06-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2306.07106