Simultaneous approximation by Bernstein polynomials with integer coefficients
We prove that several forms of the Bernstein polynomials with integer coefficients possess the property of simultaneous approximation, that is, they approximate not only the function but also its derivatives. We establish direct estimates of the error of that approximation in uniform norm by means o...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autor: | |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
07.05.2018
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove that several forms of the Bernstein polynomials with integer coefficients possess the property of simultaneous approximation, that is, they approximate not only the function but also its derivatives. We establish direct estimates of the error of that approximation in uniform norm by means of moduli of smoothness. Moreover, we show that the sufficient conditions under which those estimates hold are also necessary. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1804.08248 |