OpTaS: An Optimization-based Task Specification Library for Trajectory Optimization and Model Predictive Control

This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Mower, Christopher E, Moura, João, Nazanin Zamani Behabadi, Vijayakumar, Sethu, Vercauteren, Tom, Bergeles, Christos
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 31.01.2023
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries exists to handle such problems, they either provide interfaces that are limited to a specific problem formulation (e.g. TracIK, CHOMP), or are large and statically specify the problem in configuration files (e.g. EXOTica, eTaSL). OpTaS, on the other hand, allows a user to specify custom nonlinear constrained problem formulations in a single Python script allowing the controller parameters to be modified during execution. The library provides interface to several open source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO, SciPy) to facilitate integration with established workflows in robotics. Further benefits of OpTaS are highlighted through a thorough comparison with common libraries. An additional key advantage of OpTaS is the ability to define optimal control tasks in the joint space, task space, or indeed simultaneously. The code for OpTaS is easily installed via pip, and the source code with examples can be found at https://github.com/cmower/optas.
AbstractList This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries exists to handle such problems, they either provide interfaces that are limited to a specific problem formulation (e.g. TracIK, CHOMP), or are large and statically specify the problem in configuration files (e.g. EXOTica, eTaSL). OpTaS, on the other hand, allows a user to specify custom nonlinear constrained problem formulations in a single Python script allowing the controller parameters to be modified during execution. The library provides interface to several open source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO, SciPy) to facilitate integration with established workflows in robotics. Further benefits of OpTaS are highlighted through a thorough comparison with common libraries. An additional key advantage of OpTaS is the ability to define optimal control tasks in the joint space, task space, or indeed simultaneously. The code for OpTaS is easily installed via pip, and the source code with examples can be found at https://github.com/cmower/optas.
Author Moura, João
Vercauteren, Tom
Mower, Christopher E
Bergeles, Christos
Vijayakumar, Sethu
Nazanin Zamani Behabadi
Author_xml – sequence: 1
  givenname: Christopher
  surname: Mower
  middlename: E
  fullname: Mower, Christopher E
– sequence: 2
  givenname: João
  surname: Moura
  fullname: Moura, João
– sequence: 3
  fullname: Nazanin Zamani Behabadi
– sequence: 4
  givenname: Sethu
  surname: Vijayakumar
  fullname: Vijayakumar, Sethu
– sequence: 5
  givenname: Tom
  surname: Vercauteren
  fullname: Vercauteren, Tom
– sequence: 6
  givenname: Christos
  surname: Bergeles
  fullname: Bergeles, Christos
BookMark eNpNjV1LwzAYhYMoOOd-gHcBrzuTN02bejeGX1CZsN6Pt8lbyJxJTbuh_nqHeuHV4fBwnnPBTkMMxNiVFPPcaC1uMH34wxyUkHOptIQTNgGlZGZygHM2G4atEAKKErRWE9av-gbXt3wR-Kof_Zv_wtHHkLU4kOMNDq983ZP1nbc_gNe-TZg-eRcTbxJuyY7xWP-POQbHn6OjHX9J5Lwd_YH4MoYxxd0lO-twN9DsL6esub9rlo9ZvXp4Wi7qDDVARoUVykhlsDJtYXNRkak6wqKTGgvrWtLaQdEJqVVVukoLlIhCudZQ6Uylpuz6V9un-L6nYdxs4z6F4-MGylLmpgIA9Q2RVl5P
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2301.13512
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-e6c038138a98b6c409e89fea6f15a6cdbe55d26f015397d950a1aa03db8e7d893
IEDL.DBID M7S
IngestDate Mon Jun 30 08:20:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-e6c038138a98b6c409e89fea6f15a6cdbe55d26f015397d950a1aa03db8e7d893
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2771489222?pq-origsite=%requestingapplication%
PQID 2771489222
PQPubID 2050157
ParticipantIDs proquest_journals_2771489222
PublicationCentury 2000
PublicationDate 20230131
PublicationDateYYYYMMDD 2023-01-31
PublicationDate_xml – month: 01
  year: 2023
  text: 20230131
  day: 31
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8208666
SecondaryResourceType preprint
Snippet This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Control tasks
Libraries
Optimal control
Optimization
Parameter modification
Predictive control
Programming languages
Robotics
Source code
Specifications
Task space
Trajectory optimization
Title OpTaS: An Optimization-based Task Specification Library for Trajectory Optimization and Model Predictive Control
URI https://www.proquest.com/docview/2771489222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA3aKrjyjY9asnAb2swjmbgRLS0K2g52kLoqmSQD9TEdZ2rRvzdJU0UXblyGIRAScu6Zc2_uAeCUkJATEgikPCxRkGEPcc1MERUixZnm39T2Kbi_of1-NBqx2AlulSurXGKiBWo5FUYjb3mU6plMh7Pz4hUZ1yiTXXUWGqugbrokYFu6N_zSWDxCNWP2F8lM27qrxcv3ydxUP2Pj-GB8KH9BsI0rvc3_rmgL1GNeqHIbrKh8B6zbek5R7YJiUCR8eAYvcjjQoPDiXlsiE7QkTHj1BK3zfOYkO-jeL0DNYaGOX49WzP_4MRnyXELjnfYM49LkdwxSws6i1n0PJL1u0rlCzlwBcU25kCLC5Aj9iLMoJUL_5amIZYqTDOvDEzJVYSg9kmm2oBmLZGGbY87bvkwjRaUmOfuglk9zdQAgzRSWvmK-9FggWMp8n0Ys0LxHtCXL6CFoLPdv7C5INf7evKO_Px-DDePwblQPHzdAbVa-qROwJuazSVU2Qf2y24_vmvbc9Si-vo0fPgEqlbmp
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFA7iFH3yjpepedDHsDXdkkYQkelwbG6DFfFtpEkK3mpt53Q_yv_oSbYp-uDbHnwOgbYnPd-Xc_sQOmKsKhmrKGKop0kl9iiRwEwJVyryYuDf3M0puGnxdju4vRXdOfQx7YWxZZVTn-gctX5WNkZeopzDTgFwdpa-EKsaZbOrUwmN8bFomtEbXNny08YF2PeY0vplWLsiE1UBIoFrEMOUTY75gRRBxBRcb0wgYiNZ7MFTKx2ZalVTFgNMAlRrUS1LT8qyr6PAcB3Y2Uvg8QvAIqhwlYK9r5AOZRwIuj_OnbpJYSWZvd8NbbG1ZwUmrOzlL4_vYKy-8s8-wCoqdGVqsjU0Z5J1tOiqVVW-gdJOGsreCT5PcAdc3tOkl5RYSNY4lPkD7qXGVRu6BTzpzsDA0DGg871LVYx-bMYy0dgqwz3ibmazVxYHcG1cyb-Jwlm84xaaT54Ts40wj42nfSN8TUVFiUj4Pg9EBVidKmsR8x1UnJqrP_n98_63rXb_Xj5ES1fhdavfarSbe2jZatnb-I7vFdH8IHs1-2hBDQd3eXbgjhpG_Rlb9hMGehJh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpTaS%3A+An+Optimization-based+Task+Specification+Library+for+Trajectory+Optimization+and+Model+Predictive+Control&rft.jtitle=arXiv.org&rft.au=Mower%2C+Christopher+E&rft.au=Moura%2C+Jo%C3%A3o&rft.au=Nazanin+Zamani+Behabadi&rft.au=Vijayakumar%2C+Sethu&rft.date=2023-01-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2301.13512