OpTaS: An Optimization-based Task Specification Library for Trajectory Optimization and Model Predictive Control
This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
31.01.2023
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries exists to handle such problems, they either provide interfaces that are limited to a specific problem formulation (e.g. TracIK, CHOMP), or are large and statically specify the problem in configuration files (e.g. EXOTica, eTaSL). OpTaS, on the other hand, allows a user to specify custom nonlinear constrained problem formulations in a single Python script allowing the controller parameters to be modified during execution. The library provides interface to several open source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO, SciPy) to facilitate integration with established workflows in robotics. Further benefits of OpTaS are highlighted through a thorough comparison with common libraries. An additional key advantage of OpTaS is the ability to define optimal control tasks in the joint space, task space, or indeed simultaneously. The code for OpTaS is easily installed via pip, and the source code with examples can be found at https://github.com/cmower/optas. |
|---|---|
| AbstractList | This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries exists to handle such problems, they either provide interfaces that are limited to a specific problem formulation (e.g. TracIK, CHOMP), or are large and statically specify the problem in configuration files (e.g. EXOTica, eTaSL). OpTaS, on the other hand, allows a user to specify custom nonlinear constrained problem formulations in a single Python script allowing the controller parameters to be modified during execution. The library provides interface to several open source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO, SciPy) to facilitate integration with established workflows in robotics. Further benefits of OpTaS are highlighted through a thorough comparison with common libraries. An additional key advantage of OpTaS is the ability to define optimal control tasks in the joint space, task space, or indeed simultaneously. The code for OpTaS is easily installed via pip, and the source code with examples can be found at https://github.com/cmower/optas. |
| Author | Moura, João Vercauteren, Tom Mower, Christopher E Bergeles, Christos Vijayakumar, Sethu Nazanin Zamani Behabadi |
| Author_xml | – sequence: 1 givenname: Christopher surname: Mower middlename: E fullname: Mower, Christopher E – sequence: 2 givenname: João surname: Moura fullname: Moura, João – sequence: 3 fullname: Nazanin Zamani Behabadi – sequence: 4 givenname: Sethu surname: Vijayakumar fullname: Vijayakumar, Sethu – sequence: 5 givenname: Tom surname: Vercauteren fullname: Vercauteren, Tom – sequence: 6 givenname: Christos surname: Bergeles fullname: Bergeles, Christos |
| BookMark | eNpNjV1LwzAYhYMoOOd-gHcBrzuTN02bejeGX1CZsN6Pt8lbyJxJTbuh_nqHeuHV4fBwnnPBTkMMxNiVFPPcaC1uMH34wxyUkHOptIQTNgGlZGZygHM2G4atEAKKErRWE9av-gbXt3wR-Kof_Zv_wtHHkLU4kOMNDq983ZP1nbc_gNe-TZg-eRcTbxJuyY7xWP-POQbHn6OjHX9J5Lwd_YH4MoYxxd0lO-twN9DsL6esub9rlo9ZvXp4Wi7qDDVARoUVykhlsDJtYXNRkak6wqKTGgvrWtLaQdEJqVVVukoLlIhCudZQ6Uylpuz6V9un-L6nYdxs4z6F4-MGylLmpgIA9Q2RVl5P |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2301.13512 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-e6c038138a98b6c409e89fea6f15a6cdbe55d26f015397d950a1aa03db8e7d893 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 08:20:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-e6c038138a98b6c409e89fea6f15a6cdbe55d26f015397d950a1aa03db8e7d893 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2771489222?pq-origsite=%requestingapplication% |
| PQID | 2771489222 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2771489222 |
| PublicationCentury | 2000 |
| PublicationDate | 20230131 |
| PublicationDateYYYYMMDD | 2023-01-31 |
| PublicationDate_xml | – month: 01 year: 2023 text: 20230131 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8208666 |
| SecondaryResourceType | preprint |
| Snippet | This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Control tasks Libraries Optimal control Optimization Parameter modification Predictive control Programming languages Robotics Source code Specifications Task space Trajectory optimization |
| Title | OpTaS: An Optimization-based Task Specification Library for Trajectory Optimization and Model Predictive Control |
| URI | https://www.proquest.com/docview/2771489222 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA3aKrjyjY9asnAb2swjmbgRLS0K2g52kLoqmSQD9TEdZ2rRvzdJU0UXblyGIRAScu6Zc2_uAeCUkJATEgikPCxRkGEPcc1MERUixZnm39T2Kbi_of1-NBqx2AlulSurXGKiBWo5FUYjb3mU6plMh7Pz4hUZ1yiTXXUWGqugbrokYFu6N_zSWDxCNWP2F8lM27qrxcv3ydxUP2Pj-GB8KH9BsI0rvc3_rmgL1GNeqHIbrKh8B6zbek5R7YJiUCR8eAYvcjjQoPDiXlsiE7QkTHj1BK3zfOYkO-jeL0DNYaGOX49WzP_4MRnyXELjnfYM49LkdwxSws6i1n0PJL1u0rlCzlwBcU25kCLC5Aj9iLMoJUL_5amIZYqTDOvDEzJVYSg9kmm2oBmLZGGbY87bvkwjRaUmOfuglk9zdQAgzRSWvmK-9FggWMp8n0Ys0LxHtCXL6CFoLPdv7C5INf7evKO_Px-DDePwblQPHzdAbVa-qROwJuazSVU2Qf2y24_vmvbc9Si-vo0fPgEqlbmp |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFA7iFH3yjpepedDHsDXdkkYQkelwbG6DFfFtpEkK3mpt53Q_yv_oSbYp-uDbHnwOgbYnPd-Xc_sQOmKsKhmrKGKop0kl9iiRwEwJVyryYuDf3M0puGnxdju4vRXdOfQx7YWxZZVTn-gctX5WNkZeopzDTgFwdpa-EKsaZbOrUwmN8bFomtEbXNny08YF2PeY0vplWLsiE1UBIoFrEMOUTY75gRRBxBRcb0wgYiNZ7MFTKx2ZalVTFgNMAlRrUS1LT8qyr6PAcB3Y2Uvg8QvAIqhwlYK9r5AOZRwIuj_OnbpJYSWZvd8NbbG1ZwUmrOzlL4_vYKy-8s8-wCoqdGVqsjU0Z5J1tOiqVVW-gdJOGsreCT5PcAdc3tOkl5RYSNY4lPkD7qXGVRu6BTzpzsDA0DGg871LVYx-bMYy0dgqwz3ibmazVxYHcG1cyb-Jwlm84xaaT54Ts40wj42nfSN8TUVFiUj4Pg9EBVidKmsR8x1UnJqrP_n98_63rXb_Xj5ES1fhdavfarSbe2jZatnb-I7vFdH8IHs1-2hBDQd3eXbgjhpG_Rlb9hMGehJh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpTaS%3A+An+Optimization-based+Task+Specification+Library+for+Trajectory+Optimization+and+Model+Predictive+Control&rft.jtitle=arXiv.org&rft.au=Mower%2C+Christopher+E&rft.au=Moura%2C+Jo%C3%A3o&rft.au=Nazanin+Zamani+Behabadi&rft.au=Vijayakumar%2C+Sethu&rft.date=2023-01-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2301.13512 |