Exploring CNN-based models for image's aesthetic score prediction with using ensemble
In this paper, we proposed a framework of constructing two types of the automatic image aesthetics assessment models with different CNN architectures and improving the performance of the image's aesthetic score prediction by the ensemble. Moreover, the attention regions of the models to the ima...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| 1. Verfasser: | |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
11.10.2022
|
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we proposed a framework of constructing two types of the automatic image aesthetics assessment models with different CNN architectures and improving the performance of the image's aesthetic score prediction by the ensemble. Moreover, the attention regions of the models to the images are extracted to analyze the consistency with the subjects in the images. The experimental results verify that the proposed method is effective for improving the AS prediction. Moreover, it is found that the AS classification models trained on XiheAA dataset seem to learn the latent photography principles, although it can't be said that they learn the aesthetic sense. |
|---|---|
| AbstractList | In this paper, we proposed a framework of constructing two types of the automatic image aesthetics assessment models with different CNN architectures and improving the performance of the image's aesthetic score prediction by the ensemble. Moreover, the attention regions of the models to the images are extracted to analyze the consistency with the subjects in the images. The experimental results verify that the proposed method is effective for improving the AS prediction. Moreover, it is found that the AS classification models trained on XiheAA dataset seem to learn the latent photography principles, although it can't be said that they learn the aesthetic sense. |
| Author | Dai, Ying |
| Author_xml | – sequence: 1 givenname: Ying surname: Dai fullname: Dai, Ying |
| BookMark | eNotjr1OwzAURi0EEqX0AdgsMTCl2Nd2HI-oKj9SVZYyV45z3bpK4mCn0MenCKYjfcP5zg257GOPhNxxNpeVUuzRplP4mgOcB6Y4NxdkAkLwopIA12SW84ExBqUGpcSEfCxPQxtT6Hd0sV4Xtc3Y0C422GbqY6Khszt8yNRiHvc4BkeziwnpkLAJbgyxp99h3NNj_lVgn7GrW7wlV962GWf_nJLN83KzeC1W7y9vi6dVYRVA4aQrZcWkZoBNU4JnCo0rnVZQK8uFk7zy2oCvjLS18N6YmqPnQjqluTViSu7_tEOKn8dz4fYQj6k_P25Bg2RayBLED6cIU9k |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2210.05119 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-c4c64804702edd62f05e9c6c752b5a13c418f792f894ab3ff99b1ef134c571a93 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:20:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-c4c64804702edd62f05e9c6c752b5a13c418f792f894ab3ff99b1ef134c571a93 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2724073462?pq-origsite=%requestingapplication% |
| PQID | 2724073462 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2724073462 |
| PublicationCentury | 2000 |
| PublicationDate | 20221011 |
| PublicationDateYYYYMMDD | 2022-10-11 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221011 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8100563 |
| SecondaryResourceType | preprint |
| Snippet | In this paper, we proposed a framework of constructing two types of the automatic image aesthetics assessment models with different CNN architectures and... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| Title | Exploring CNN-based models for image's aesthetic score prediction with using ensemble |
| URI | https://www.proquest.com/docview/2724073462 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9achA8xW6y2c3mJFhaFHRZtEI9lWx2ogWtdbcWf75J3NaD4MVjyCFhhsx8M_NlBqFTqoXQuRIkB2kDFKqBqBw4oSG3Gg_B-kTfXf9GpGkyHMqsTrhVNa1yYRO9oS7etMuRd5hwsUfIY3YxfSduapSrrtYjNFZR03VJYJ66d7_MsbBYWMQcfhczfeuujio_x_Nzxhyjy5XQfplg71f6m_-90RZqZmoK5TZagckOWvd8Tl3toocltw5305Q4X1VgP_Wmwham4vGrtSNnFVb2uGf3jxFXrp8lnpaucOOUhV2GFjta_BO2oS685i-whwb93qB7ReoJCkRZXEU01zFPAi4CBkURMxNEIHWsRcTySNFQc5oYIZlJJFd5aIyUOQVj9aQjQZUM91Fj8jaBA4Q5WGhm3buOIs0VsMRYKBYHJoAi1gGnh6i1ENKofgXV6EdCR39vH6MN5r4VOKYIbaHGrPyAE7Sm57NxVbZR87KXZndtr1y7yq5vs8cv1QqvSw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHEFBo7TpwMiKFQtWqJKlGkbpXjXKASfZCUAj-K_4gvfTAgsTEwZ4lzl---u_t8R8gZ01LqSEkrgsAkKEyDpSIQFnOEsbgDJibm0_VbMgz9bjdoF8jn4i4MyioXmJgDdTzSWCOvcIm5hyM8fj1-sXBrFHZXFys0Zm7RhI83k7JlV40bY99zzmu3nWrdmm8VsJThGpYW2hO-LaTNIY49ntguBNrT0uWRq5ijBfMTGfDED4SKnCQJgohBYt5du5IpnL1kEL8kEPxzpeD9sqTDPWkIujPrneaTwioqfe9PLzlHARl27H4gfh7Gahv_7ANsklJbjSHdIgUYbpPVXK2qsx3ysFQO0moYWhiJY5rv9MmoIeG0PzAoeZFRZU73hLc0aYbTOuk4xbYUuiLF-jNF0f8jNYk8DKJn2CWdvzjIHikOR0PYJ1SAIZ6GvGjX1UIB9xNDND07sSH2tC3YASkvbNKb_-NZ79sgh78_PiVr9c5dq9dqhM0jss7xAgVqYliZFCfpKxyTFT2d9LP0JPcnSnp_bL4vgksG1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+CNN-based+models+for+image%27s+aesthetic+score+prediction+with+using+ensemble&rft.jtitle=arXiv.org&rft.au=Dai%2C+Ying&rft.date=2022-10-11&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2210.05119 |