An approach to the distributionally robust shortest path problem
In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-mak...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
12.03.2021
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-maker's initial information. The ambiguity set is formed by all distributions that satisfy prescribed linear first-order moment constraints with respect to subsets of arcs and individual probability constraints with respect to particular arcs. Under some additional assumptions the resulting distributionally robust shortest path problem (DRSPP) admits equivalent robust and mixed-integer programming (MIP) reformulations. The robust reformulation is shown to be \(NP\)-hard, whereas the problem without the first-order moment constraints is proved to be polynomially solvable. We perform numerical experiments to illustrate the advantages of the considered approach; we also demonstrate that the MIP reformulation of DRSPP can be solved effectively using off-the-shelf solvers. |
|---|---|
| AbstractList | In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-maker's initial information. The ambiguity set is formed by all distributions that satisfy prescribed linear first-order moment constraints with respect to subsets of arcs and individual probability constraints with respect to particular arcs. Under some additional assumptions the resulting distributionally robust shortest path problem (DRSPP) admits equivalent robust and mixed-integer programming (MIP) reformulations. The robust reformulation is shown to be \(NP\)-hard, whereas the problem without the first-order moment constraints is proved to be polynomially solvable. We perform numerical experiments to illustrate the advantages of the considered approach; we also demonstrate that the MIP reformulation of DRSPP can be solved effectively using off-the-shelf solvers. |
| Author | Burashnikov, Evgenii P Ketkov, Sergey S Prokopyev, Oleg A |
| Author_xml | – sequence: 1 givenname: Sergey surname: Ketkov middlename: S fullname: Ketkov, Sergey S – sequence: 2 givenname: Oleg surname: Prokopyev middlename: A fullname: Prokopyev, Oleg A – sequence: 3 givenname: Evgenii surname: Burashnikov middlename: P fullname: Burashnikov, Evgenii P |
| BookMark | eNotT8tKxDAUDaLgOM4HuAu47pgmuU26cxh8wYAL3Q-5SUo71KYmqejfG9DVORw4rytyPoXJE3JTs63UAOzOxO_ha1u3RWBaSXlGVlyIutKS80uySenEGOON4gBiRe53EzXzHIOxPc2B5t5TN6QcB1zyECYzjj80BlxSpqkPMftCZpN7Wjw4-o9rctGZMfnNP67J2-PD-_65Orw-vex3h8oA5xVyhY0DKYwUDrtGI2qwSvHWScMK8Whaaa1sVactcsZQOquhRWidcWJNbv9SS-vnUjYcT2GJZV06csEUAJRD4heEsk2a |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1910.08744 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-b27b6d543a43dbf68bb85c7729d4a0c77eba94cc497f8cb200b4dc859b59dad3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:25:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-b27b6d543a43dbf68bb85c7729d4a0c77eba94cc497f8cb200b4dc859b59dad3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2307555672?pq-origsite=%requestingapplication% |
| PQID | 2307555672 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2307555672 |
| PublicationCentury | 2000 |
| PublicationDate | 20210312 |
| PublicationDateYYYYMMDD | 2021-03-12 |
| PublicationDate_xml | – month: 03 year: 2021 text: 20210312 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7519336 |
| SecondaryResourceType | preprint |
| Snippet | In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Ambiguity Critical path Decision making Integer programming Robustness (mathematics) Shortest-path problems Solvers |
| Title | An approach to the distributionally robust shortest path problem |
| URI | https://www.proquest.com/docview/2307555672 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BAxITb_EolQfWtKljJ_HES61goIooQ5kqvyIqVUlJ0gr-PXZwYUBiYbNlD9b5fD6fP30fwCXRrI8D47xaYuKTUEhfmHeGT2NpkmutdRSIRmwiHo2SyYSlruBWOVjlOiY2gVoV0tbIexawTCmNYny1ePOtapT9XXUSGpvgWZYE3ED3xt81FmxmUxp-fWY21F09Xr7PVl3zSAm6gWV-_xWCm3tluPvfFe2Bl_KFLvdhQ-cHsN3gOWV1CNc3OVrThaO6QCbNQ8py5Dp5Kz6ff6CyEMuqRtWrBdyahlUnRk5h5gjGw8Hz3b3vxBJ8blIoY-BYRIqSkJNQiSxKhEiotKmzIjwwDS04I1ISFmeJFOZsCKJkQpmgTHEVHkMrL3J9Aoj3w5irfkbMdGIZz6Iky3DEmd09Ex9Pob02x9T5ezX9scXZ38PnsIMtKsQi4nAbWnW51BewJVf1rCo74N0ORulTp9lG00sfHtOXTyogqNA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5Qe9DjwtJt93EwalQCAQkJHDhJ-tpIQhbcBZT_5I-0XXb1YOLNg7cmu2lm26-zM-3X-QAuiQpq2NbgVQITizhcWFznGRb1hA6ulVKuzVOxCa_T8QeDoFuAj_wujKFV5j4xddRyIsweedUQlimlrodvpq-WUY0yp6u5hMYKFi21fNMpW3LdfNDze4Vx_bF_37AyVQGL6VhDW-JxV1LiMOJIHro-5z4VJsaUhNm6oTgLiBAk8EJfcA0iTqTwacBpIJl0dK9rUCLG96dEwd7Xjg7WtlHqrI5O00JhVRa_jxYVnRLZFdvUmf_h8NO_WH37f33_DpS6bKriXSioaA82Uq6qSPbh9i5CeSl0NJsgHcIiaer_ZtJdbDxeonjC58kMJS-GTKwbRnkZZeo5B9D7A5MPoRhNInUEiNUcj8laSPTrxFRzc_0wxC4LDDK17z-Gcj74w2wtJ8PvkT_5_fEFbDb6T-1hu9lpncIWNuwXw_zDZSjO4rk6g3WxmI2S-DwFDoLnv52nT58eAoE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+to+the+distributionally+robust+shortest+path+problem&rft.jtitle=arXiv.org&rft.au=Ketkov%2C+Sergey+S&rft.au=Prokopyev%2C+Oleg+A&rft.au=Burashnikov%2C+Evgenii+P&rft.date=2021-03-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1910.08744 |