An approach to the distributionally robust shortest path problem

In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-mak...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Ketkov, Sergey S, Prokopyev, Oleg A, Burashnikov, Evgenii P
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 12.03.2021
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-maker's initial information. The ambiguity set is formed by all distributions that satisfy prescribed linear first-order moment constraints with respect to subsets of arcs and individual probability constraints with respect to particular arcs. Under some additional assumptions the resulting distributionally robust shortest path problem (DRSPP) admits equivalent robust and mixed-integer programming (MIP) reformulations. The robust reformulation is shown to be \(NP\)-hard, whereas the problem without the first-order moment constraints is proved to be polynomially solvable. We perform numerical experiments to illustrate the advantages of the considered approach; we also demonstrate that the MIP reformulation of DRSPP can be solved effectively using off-the-shelf solvers.
AbstractList In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-maker's initial information. The ambiguity set is formed by all distributions that satisfy prescribed linear first-order moment constraints with respect to subsets of arcs and individual probability constraints with respect to particular arcs. Under some additional assumptions the resulting distributionally robust shortest path problem (DRSPP) admits equivalent robust and mixed-integer programming (MIP) reformulations. The robust reformulation is shown to be \(NP\)-hard, whereas the problem without the first-order moment constraints is proved to be polynomially solvable. We perform numerical experiments to illustrate the advantages of the considered approach; we also demonstrate that the MIP reformulation of DRSPP can be solved effectively using off-the-shelf solvers.
Author Burashnikov, Evgenii P
Ketkov, Sergey S
Prokopyev, Oleg A
Author_xml – sequence: 1
  givenname: Sergey
  surname: Ketkov
  middlename: S
  fullname: Ketkov, Sergey S
– sequence: 2
  givenname: Oleg
  surname: Prokopyev
  middlename: A
  fullname: Prokopyev, Oleg A
– sequence: 3
  givenname: Evgenii
  surname: Burashnikov
  middlename: P
  fullname: Burashnikov, Evgenii P
BookMark eNotT8tKxDAUDaLgOM4HuAu47pgmuU26cxh8wYAL3Q-5SUo71KYmqejfG9DVORw4rytyPoXJE3JTs63UAOzOxO_ha1u3RWBaSXlGVlyIutKS80uySenEGOON4gBiRe53EzXzHIOxPc2B5t5TN6QcB1zyECYzjj80BlxSpqkPMftCZpN7Wjw4-o9rctGZMfnNP67J2-PD-_65Orw-vex3h8oA5xVyhY0DKYwUDrtGI2qwSvHWScMK8Whaaa1sVactcsZQOquhRWidcWJNbv9SS-vnUjYcT2GJZV06csEUAJRD4heEsk2a
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1910.08744
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-b27b6d543a43dbf68bb85c7729d4a0c77eba94cc497f8cb200b4dc859b59dad3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:25:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-b27b6d543a43dbf68bb85c7729d4a0c77eba94cc497f8cb200b4dc859b59dad3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2307555672?pq-origsite=%requestingapplication%
PQID 2307555672
PQPubID 2050157
ParticipantIDs proquest_journals_2307555672
PublicationCentury 2000
PublicationDate 20210312
PublicationDateYYYYMMDD 2021-03-12
PublicationDate_xml – month: 03
  year: 2021
  text: 20210312
  day: 12
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7519336
SecondaryResourceType preprint
Snippet In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Ambiguity
Critical path
Decision making
Integer programming
Robustness (mathematics)
Shortest-path problems
Solvers
Title An approach to the distributionally robust shortest path problem
URI https://www.proquest.com/docview/2307555672
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BAxITb_EolQfWtKljJ_HES61goIooQ5kqvyIqVUlJ0gr-PXZwYUBiYbNlD9b5fD6fP30fwCXRrI8D47xaYuKTUEhfmHeGT2NpkmutdRSIRmwiHo2SyYSlruBWOVjlOiY2gVoV0tbIexawTCmNYny1ePOtapT9XXUSGpvgWZYE3ED3xt81FmxmUxp-fWY21F09Xr7PVl3zSAm6gWV-_xWCm3tluPvfFe2Bl_KFLvdhQ-cHsN3gOWV1CNc3OVrThaO6QCbNQ8py5Dp5Kz6ff6CyEMuqRtWrBdyahlUnRk5h5gjGw8Hz3b3vxBJ8blIoY-BYRIqSkJNQiSxKhEiotKmzIjwwDS04I1ISFmeJFOZsCKJkQpmgTHEVHkMrL3J9Aoj3w5irfkbMdGIZz6Iky3DEmd09Ex9Pob02x9T5ezX9scXZ38PnsIMtKsQi4nAbWnW51BewJVf1rCo74N0ORulTp9lG00sfHtOXTyogqNA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5Qe9DjwtJt93EwalQCAQkJHDhJ-tpIQhbcBZT_5I-0XXb1YOLNg7cmu2lm26-zM-3X-QAuiQpq2NbgVQITizhcWFznGRb1hA6ulVKuzVOxCa_T8QeDoFuAj_wujKFV5j4xddRyIsweedUQlimlrodvpq-WUY0yp6u5hMYKFi21fNMpW3LdfNDze4Vx_bF_37AyVQGL6VhDW-JxV1LiMOJIHro-5z4VJsaUhNm6oTgLiBAk8EJfcA0iTqTwacBpIJl0dK9rUCLG96dEwd7Xjg7WtlHqrI5O00JhVRa_jxYVnRLZFdvUmf_h8NO_WH37f33_DpS6bKriXSioaA82Uq6qSPbh9i5CeSl0NJsgHcIiaer_ZtJdbDxeonjC58kMJS-GTKwbRnkZZeo5B9D7A5MPoRhNInUEiNUcj8laSPTrxFRzc_0wxC4LDDK17z-Gcj74w2wtJ8PvkT_5_fEFbDb6T-1hu9lpncIWNuwXw_zDZSjO4rk6g3WxmI2S-DwFDoLnv52nT58eAoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+to+the+distributionally+robust+shortest+path+problem&rft.jtitle=arXiv.org&rft.au=Ketkov%2C+Sergey+S&rft.au=Prokopyev%2C+Oleg+A&rft.au=Burashnikov%2C+Evgenii+P&rft.date=2021-03-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1910.08744