Parametric "Non-nested" Discriminants for Multiplicities of Univariate Polynomials

We consider the problem of complex root classification, i.e., finding the conditions on the coefficients of a univariate polynomial for all possible multiplicity structures on its complex roots. It is well known that such conditions can be written as conjunctions of several polynomial equations and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Hong, Hoon, Yang, Jing
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 22.04.2023
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of complex root classification, i.e., finding the conditions on the coefficients of a univariate polynomial for all possible multiplicity structures on its complex roots. It is well known that such conditions can be written as conjunctions of several polynomial equations and one inequation in the coefficients. Those polynomials in the coefficients are called discriminants for multiplicities. It is well known that discriminants can be obtained by using repeated parametric gcd's. The resulting discriminants are usually nested determinants, that is, determinants of matrices whose entries are determinants, and so son. In this paper, we give a new type of discriminants which are not based on repeated gcd's. The new discriminants are simpler in that they are non-nested determinants and have smaller maximum degrees.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2301.00315